1.89, Environmental Microbiology Prof. Martin Polz

Lecture 13

Chemolithotrophic Organisms (cont.)

Exist @ interface of aerobic & anaerobic organisms

- Sulfur-oxidizers: H_2S , S^0 , $S_2O_3^{2-} \rightarrow SO_4^{2-}$ $/O_2$, NO_3^-
- Iron-oxidizers: $Fe(II) \rightarrow Fe(III)$ / O_2 , NO_3 \rightarrow Only efficient @ acidic pH
- Methane-oxidizers: $CH_4 \rightarrow CO_2$ / O_2 e acceptors

 (Methanetrophs) obligate methans oxidizers

(Methanotrophs) obligate methane oxidizers

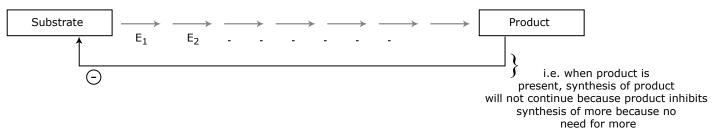
Biogeochemical Cycles

e tower = model of the biosphere

$$CO_2 + H_2O$$
 $\xrightarrow{\text{plants}}$ $CH_2O + O_2$

Carbon dominates all other biogeochemical cycles

Coordination of metabolic reactions


Regulation:

- 1. Enzyme activity
- 2. Enzyme level
- 3. Global control networks
- 1. Enzyme activity: controlled how?
 - o Specific proteases destroy enzymes (destruction)
 - o Activation: cleavage of inactive precursor
 - o Modification:
 - Covalent modification (example phosphorylation)
 - Reversible modification

Effector molecule (product) must bind possibly in addition to substrate.

Allosteric enzymes \rightarrow enzyme inhibition

→ Modified by feedback inhibition

→ Typically at 1st enzyme in pathway

Control of central metabolism

o Intermediates are allosteric effectors

Example: phosphoenolpyruvate is allosteric effector for phosphofructokinase

 ATP, NADH, NADPH – allosteric effectors because amounts present indicate cell energy status

Cells energy status:

energy charge =
$$\frac{\left[ATP\right] + \frac{\left[ADP\right]}{2}}{\left[ATP\right] + \left[ADP\right] + \left[AMP\right]}$$
 in cells, ~ 0.87-0.95

Generalization: if energy charge is high, cell will divert pathway towards more biosynthesis. If energy charge is low, cell will divert pathway towards fueling.

Catabolic Reduction Charge =
$$\frac{\left[\text{NADH}\right]}{\left[\text{NADH}\right] + \left[\text{NAD}^{+}\right]} \sim \underbrace{0.3-07}_{\text{range}}$$

Anabolic Reduction Charge =
$$\frac{\left[\text{NADPH}\right]}{\left[\text{NADPH}\right] + \left[\text{NADP}^+\right]} \sim 10 \text{ fold higher than CRC}$$