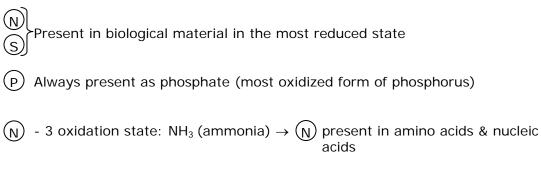


Metabolism

Energy (catabolism) + Biomass (anabolism)


- Catabolism \rightarrow substrates with highest energy yield are preferentially used.
- Anabolism → substrates with lowest required energy input to biomass are preferentially used.
- Environmental substrates (example: CO₂, N, S, P, C) are "biodegraded" or "hydrolyzed" to form 12 precursor molecules which are used to make 75-100 building blocks which are in turn used to make a variety of macromolecules (example: lipids, cell wall, etc.)

Biosynthesis

- 1. Chemical composition of a cell is relatively constant.
- 2. 12 precursors & 75-100 building blocks.

Assimilation of Inorganic Nutrients

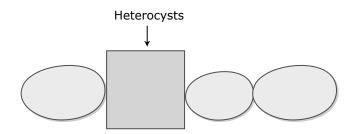
Bacteria

Point: to get N in form of

NH₃!

- organic N-containing material
- <u>all</u> can take up NH_4^{\oplus} ammonia
- <u>many</u> can take up NO_3^{Θ} nitrate, NO_2^{Θ} nitrite
- <u>some</u> can take up N₂

 NO_3^{Θ} , NO_2^{Θ} → taken up & immediately reduced i.e. uptake is mediated by assimilatory nitrate reductase (converts NO_3^- to NO_2^-) & by assimilatory nitrate reductase (converts NO_2^- to NH_3)


Preference for N compounds:

		(More reduced)
		R
[Note: Assimilation vs. Dissimilation]		NH₃ over
/	/	NO ₂ ⁻ over
V	\not	NO ₃
anabolism	catabolism	3
		(More oxidized)

Fixation of molecular Nitrogen (N₂)

- 80% of atmosphere is N₂
- but N_2 is difficult to metabolize because of its triple bond $N \equiv N$
- N₂ fixation is unique to bacteria
- Fixation via <u>nitrogenase</u> \rightarrow requires 6-15 mol ATP per 1 mol fixed N₂

Nitrogenase is very O_2 - sesitive, so that nitrogen-fixation is much more efficient in anaerobic environments. Bacteria in anaerobic environments have special adaptations.

Ammonia assimilation:

Two pathways:

- L-glutamate dehydrogenase (GDH) Reductive amination; cost is NADPH. Ammonia is transferred between amino acids by transamination.
- Glutamine synthetase & glutamate synthetase (GS-GOGAT) Requires ATP, more energy needed that in 1st pathway, but can therefore exploit lower concentrations of N.

: Cells use cheapest pathways to conserve energy.

<u>Sulfur</u>: (Sulfite = SO_3^{2-})

 $SO_4^{2-} \rightarrow$ Form present in <u>aerobic</u> environments

oxidized state is costly for bacteria to take up, so bacteria instead prefer to take up sulfur in the form of organic sulfur compounds.

Phosphorus:

Т

- 1. Redox does not change
- 2. Assimilated in ATP pathways (energy pathways)

Note: cells can <u>not</u> take up organic phosphate compounds. Can only take up inorganic phosphate.

Alkaline phosphatase hydrolyzes phosphate from organic compounds on cell surface so that cell can take up P as inorganic P.