1.89, Environmental Microbiology

Prof. Martin Polz

Lecture 15

A. How many Microbes are there? \rightarrow Direct Counts \rightarrow average cell concentration \times volume of habitat $>10^{30}$ prokaryotic cells
B. Biomass of plants ~ equal to biomass of prokaryotes
C. Diversity: 1980s: Carl Woese \rightarrow used sequence similarities to determine phylogenetic relationships among microorganisms.
\rightarrow Carl proposed the 3 domain idea, separating prokaryotes into: Bacteria and Archaea.

Norman Pace \rightarrow application to environment "phylogenetic framework"

See examples handout: Acinas et al.

Probes and Primers $=$ single-stranded pieces of DNA that hybridize to target sequence
"probes" \rightarrow hybridization techniques
"primers" \rightarrow PCR analysis

- DNA/RNA hybridizes in a temperature dependent fashion

Melting Curves

PCR

Allows for the amplification of specific genes to million-billion fold.

PCR reaction contains

- Target DNA (example: environmental DNA)
- 2 primers (20-30 nts long)
- Thermostable DNA polymerase
- Nucleotides (dNTPs)
- Mg^{2+} (cofactor for DNA polymerase)
-

Mix is subjected to temperature cycling

End up with
gene of interest

\Rightarrow PCR Primer Design

1) Specific Primers - uniquely match a certain sequence
2) Universal Primers - recognize for example all bacteria
3) Group Specific Primers - recognizes sequences specific to certain groups

Cloning

Example: Ocean bacterioplankton
Most abundant organisms have eluded cultivation. We only know of their existence through cloning.

Plate Count (CFU)
Direct Count (DAPF)
Cloning "Great Plate Count Anomaly"

