
1.89, Environmental Microbiology Prof. Martin Polz Lecture 2

Microorganisms

- Small, 10⁻⁶ m = 1 μm
- Unicellular (∴self-sufficient)
- Diverse metabolism, physiology (20 million organic substrates)
- Adaptability → physiological
 - \rightarrow genetic
- Ubiquitous
 - o 10⁶ cells/mL (natural waters)
 - o 10⁹ cells/g (soils + sediments)
- $\sim~10^6~cells/mL \rightarrow 1~\mu m$

1 mL H₂O = $10^{12} \ \mu m^3$

individual cell $10^{12} \,\mu\text{m}^3 \rightarrow \frac{1}{10^9}$ of volume occupied by bacterial cells

Today

- 1. Observational tools
- 2. Chemical composition
- 3. Cells architecture

1. Tools

1) Light Microscope: maximum magnification = 1,500 fold

resolution \cong 0.2 µm

- \rightarrow Staining to increase contrast:
 - color stains
 - fluorescent stains "epi-fluorescent microscopy"
 - confocal laser stains
- 2) Electron Microscope: ~ 1000 higher fold resolution (2,500 fold)

→ Transmission EM (TEM) – $\underline{2D}$ → fix (example: aldehydes), dehydrate, embed in plastic, section, stain (with heavy metals), mount

 \rightarrow Scanning EM (SEM) – <u>3D</u> \rightarrow fix, dehydrate, coat with heavy metals

Bacterial Shapes: coccus, rod, spirillum, spirochete, stalk, hypha, flamentous

Can <u>not</u> use cell morphology to identify a cell because some types take many shapes.

Cell Morphology:

- Shape: >6 types
- Size:
 - $\circ~$ Bacteria archaea (size varies with nutritional state): 0.1-600 μm (~ 1 μm avg.)
 - ο Eukarya: 2-200 μm

Smaller cells have a higher surface volume ratio than larger cells, so they (small) can take up nutrients more efficiently than big cells because more surface per unit volume.

2. Chemical Composition

Bacteria/archaea:

Dry weight (DW): wet weight (WW) = 0.2-0.4 DW: WW \cong 0.3 (avg). So 70% H₂O

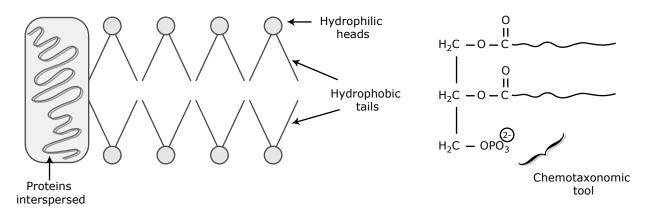
Bacteria: DW (composition):

C:N ≅ 5:1	C: 50% O: 20%	P: 3% K: 2%
	N: 14% H: 8%	S: 1% Ca, Mg, Cl: 0.05%

C, N, P are ~ constant because need a certain ratio to grow

Eukaryotes: DW:WW ~ 0.1 (90% H_2O)

Macromolecular composition \downarrow Avg. e. coli: ~ 50% composition


Size & mass variation: example - *Applied & Environmental Microbiology* 64 (1998): 688.

DW (fg)	25%	Median	75%	
Exponentially growing cells	358	489	622	demonstrates available nutrients : size
Stationary cells	148	179	211)

▲ Conclusion: Starved cells shrink to increase Surface Area: Volume ratio so that they can take up more nutrients relative to their size.

3. Cell Architecture

Cytoplasmic membrane: phospholipids bilayer

membrane is semipermeable: small >> large uncharged >> charged

- : charged molecules must move across membrane via active transport.
- 3 types of carriers/transport strategies:
 - 1) intracellular concentration gradient

Group{example PTS (Phosphotransferase System)

- 3) ABC transporters (antigen binding casette)
- \rightarrow Transport
 - o Energy intensive!
 - Transport can increase concentration up to 1,000 fold
 - o Often decisive in competitive interactions