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Outline

1. Buildings and energy – some data
2. Residential buildings
3. Commercial buildings
4. Buildings in other (mainly 
developing) countries
5. Is current progress good enough?
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Global energy consumption
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Does energy use correlate with quality of life?

Figure by MIT OCW.
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U.S. energy 
end-use

Source:EIA

Electricity –
buildings 71%

Total energy–
buildings 39%

21%27%
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U.S. residential and commercial building 
energy use intensities
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Apparently not a lot of 
progress in 25 years
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Residential buildings end-use energy 2003
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Commercial buildings end-use energy 2003
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2. Residential buildings: savings 
potential in new construction

30%: little or no increase in first cost
50%: about the same life-cycle cost
Net-zero energy or carbon neutral: much 
harder
How?  INTEGRATED, SYSTEMS DESIGN

Better walls
Better windows
Smaller HVAC equipment
Better appliances

Savings relative to early 1990s benchmark
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Doing better with houses: lots of 
insulation!

Flickr photo courtesy of 
Smalloy.



CEE 1.964
Design for Sustainability

Taking advantage of free heating 
for “elfhouse”
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Insulation, glass and mass for a full-
size house

Walden made of  15 cm extruded polystyrene (no 
openings, no airflow):~1,000 W of heat needed at 0 
oF.
Henry David needs fresh air, which requires another 
500 W to heat.  

image: Montgomery Co. 
Public Schools, VA 
www.mcps.org
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Walden with south-facing, double-pane 
glazing and water for thermal storage

Indoor and outdoor temperatures
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Building America
USDOE-sponsored partnerships between consulting 
engineers and building industry, leading to 
prototypes and large-scale production
~33,000 houses constructed
Goals

Design and construct more energy efficient homes
Reduce construction costs to provide more affordable 
housing
Improve comfort
Improve health and safety and indoor air quality
Increase resource use efficiency 
Increase building durability 

Energy target: 35-45% reduction in heating, cooling 
and hot-water energy use
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Glazing

http://www.efficientwindows.org/BuilderToolkit.pdf

visible

Full spectrum

~1/2 visible, 
1/2 infrared

Window Visible 
transmittance 

Solar heat 
gain 
coefficient 

Single clear 0.90 0.86 
Double clear 0.81 0.76 
Double low e 0.76 0.65 
Double low e tint 0.45 0.35 
Double low e, Ar fill, 
spectrally selective 

0.72 0.40 

 

$0

Single clear
Aluminum frame

6% Savings#

16% Savings#

32% Savings#

Single tint
Aluminum frame

Double clear
Wood/Vinyl frame

Double clear
Low-solar-gain low-E

Wood/Vinyl frame

Window Type
$200 $400 $600 $800

$0

Single clear
Aluminum frame

27% Savings#

#Compared to the same 2000 sf house with clear, single glazing in an aluminum 
frame.

32% Savings#

39% Savings#

Double clear
Wood/Vinyl frame

Double clear
High-solar-gain low-E

Wood/Vinyl frame

Triple clear
Mod.-solar-gain low-E

Insulated frame

Window Type
$400 $800 $1200 $1600

Annual Cooling Energy Cost for a Typical House in Phoenix, AZ

Annual Heating Energy Cost for a Typical House in Boston, MA

Figure by MIT OCW.
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The builders’ perspective: pros and cons

Durability is key
Better moisture management
Fewer warranty problems
Happier customers and builders
More referrals, sales

Less construction waste
Fewer dumpsters
Reduced tipping fees

New construction system to learn
New concepts may require changes to local building 
codes
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The systems approach
Feature Minneapolis Grayslake, 

IL
Atlanta Tucson Banning, 

CA
Advanced framing -250 -250 +250   
Insulating sheathing  0 +400   
Insulate basement  +600    
Slab-edge insulation   +200   
Unvented, conditioned attic    +750 +750 
Eliminate roof vents    -500  
Eliminate housewrap   -400   
High-performance windows +250 +1,000 +250 +300 +750 
Reduce infiltration  +100    
Controlled ventilation system +150 +125 +150 +150 +250 
Locate ducts in conditioned 
space 

 0    

Simplify or downsize duct 
distribution 

-250 -300    

Downsize air conditioner   -350 -750 -750 -1,000  
High-efficiency, direct-vent 
furnace 

 +750  +400 +400 

Power-vented gas water 
heater 

+300 +150    

Dehumidifier   +175   
Set-back thermostat  +100    
Total premium -150 +1,525 -25 +100 +2,150 
Annual homeowner savings 225 480 400 390 370 
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Refrigerators

Source: Collaborative Labeling and Appliance Standards Program
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Lighting efficacies

Source: IESNA
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Figure by MIT OCW.
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Potential gain from solid-state lighting

Source: Sandia National Lab
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Residential clothes washers and 
central A/C

Washing machine energy

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Federal
2004

Energy Star
2004

Aailable
2006

Federal
2007

Energy Star
2007

kW
h/

cy
cl

e

Residential A/C peak power

0

1

2

3

4

5

6

1978
average

Federal
1992

Federal
2006

Energy
Star 2006

Available
2006

GSHP
2006

pe
ak

-lo
ad

 k
W

Manufacturers identify Energy Star products.  A/C and 
furnace/boiler producers list efficiencies but clothes washer 
manufacturers do not tout energy consumption for their 
equipment, which only costs ~$20/year in electricity
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Lakeland, Florida, PV house
Annual energy use, kWh

2500

4700

18400

net PV efficiency

Better choice of envelope construction would 
drop payback period from 23 to 9 years 
without PV and 40 to 28 years with PV.

Photograph of a 
photovoltaic house.

Image removed for 
copyright reasons.
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Habitat for Humanity houses, Tennessee –
Oak Ridge National Lab

Five low-energy houses with very advanced technologies: 
wall panels, mechanical ventilation, waste-heat scavenging 
for hot water, PV
Heating, cooling and hot water costs about $0.70/ day (!!)
“Other” costs $1.00-1.38/day – Christmas lights (!!)
Research houses: not cost effective locally ($20K efficiency 
investment to save $400/year)
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NREL’s rational approach to efficiency 
and zero-net energy in houses

Source: 

Ren Anderson, NREL
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Automated search for best combination of 
improvements
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Tuning efficiency investments for a 
given location
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PV is expensive, at least for now

Location

Atlanta

Chicago

Houston

Phoenix

San Francisco

32

28

38

39

27

1,749

3,899

2,585

2,585

1,337

49

46

51

52

43

10,351

15,168

8,762

9,553

8,432

42,000

57,000

46,500

40,500

36,000

PV cost

Present value 
of efficiency 
investment, 

NZE, $

Savings at 
minimum 

cost, %

Savings at 
NZE, %

Present value
of efficiency 
investment,

minimum cost, 
$

Figure by MIT OCW.
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Solar Decathlon National Mall 2005
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Canadian Solar Decathlon House

Heat recovery from PV boosts efficiency from ~8% to ~35%
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3. Commercial buildings

Systems approach is lacking
No Building America equivalent
Optimization tools are not as well developed
Standards do not take systems approach
Few buildings go beyond basic code compliance

Notable successes
Individual buildings, 1/3 -1/2 below average
Expanding data base of high-performance 
buildings
Private-sector labeling program (LEED) a help
Guideline for small commercial buildings 
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Massachusetts State Transportation Building,
Boston: a 20-year oldie but goodie

Aerial photograph of the State 
Transportation Building.

Image removed for copyright reasons.
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Atrium as thermal buffer, source of daylight 
and central plaza

Photographs of atrium.

Images removed for copyright reasons.
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What’s missing in this schematic?

Hint: not what you would expect in New England winters

Storage Tank 3

AC-2
cooling 
coil

AC-3
cooling 
coil

HE-3

HWR

CHWR

AC-4
cooling 
coil

Storage Tank 3
HE-2

Storage Tank 1

KEY

HWS
CHWS

CWR

Hot water
pumps

Perimeter

Condenser
water pumps

CWS

CT-1 CT-2

Chilled 
water pumps

Zones

RU-2 RU-3

HE-1

HWS = Hot water supply    HWR = Hot water return    CWS = Condensed water supply    CWR = Condensed water return
CHWS = Chilled water supply    CHWR = Chilled water return

AC-1
cooling 
coil

RU-1

Figure by MIT OCW.
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Potential for wasted energy: simultaneous (same 
instant, same day) heating and cooling

Mild weather: perimeter may 
need heat in early morning, 
cooling in afternoon (like 
houses)

Year-round: core needs 
cooling constantly, even 
when perimeter must be 
heated

Perimeter zone

Core
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Energy consumption

173 kWh/m2 year (277 – US average)
End use energy:

Lights 41.6% (13.7 W/m2 peak)
Variable mechanical 26.1%
Steam 11.2%
Appliances 5.4%
Elevators 6.2%
Computer rooms 5.4%
Base mechanical 4.0%
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Is this a low-energy building?

173 kWh/m2 yr transp bldg
653 state office bldg
717 state office bldg
270 comm office bldg
196 comm office bldg
186 comm office bldg

The lower-energy buildings all recover 
heat from the building core
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UK Office #1

Three-story office 
building
5,100 m2 (54,900 
ft2) net floor area
Sealed windows
100% mechanical 
conditioning
1+ year of 
monitoring and 
modeling

Photograph of office building.

Image removed for copyright 
reasons.
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Open atrium but closed conference rooms

Photographs of atrium.

Images removed for copyright reasons.
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Airflow Measurements
Very important!!  Air must be heated 
or cooled, seasonally

40 L/s-person

About four times code 
requirements

One-half expected occupancy

Conference rooms controlled 
design

Heat-recovery system broken

Photograph of people taking 
airflow measurements.

Image removed for 
copyright reasons.
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CO2 in conference rooms

CO2 levels were typically well below the 1000 ppm limit
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Figure by MIT OCW.
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Savings due to heat recovery and lower airflow
CO2 emissions, kg/m2 

Energy consumption, kWh/m2

Natural gas Electricity Total

Current 30.8 
162

71.7
156

102.5
318

Current 
airflow and 
heat recovery

19.8
104

71.7
156

91.5
260

Reduced 
airflow and 
heat recovery

24.7
130

45.0
98

69.7
228
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Savings potential due to better 
operation of buildings

California: energy crisis
9% electrical demand reduction in 2001 
relative to 2000, due to increased prices

Texas: continuous commissioning
20+% energy savings in 100+ large 
buildings, less than 3 year payback
For 20 buildings

28% savings in chilled water
54% savings in hot water
2-20% savings in electricity (fans, pumps)
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UK Office #2: nearby, naturally ventilated 
building

The following pages contained 
photographs of the office building, 

atrium views, interior views 
including windows and blinds, 

exposed structural mass, and open 
doors for airflow.

Images removed for copyright 
reasons.
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Interior Temperatures: July 2003

Luton July 2003
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Interior Temperatures: August 2003

Luton August 2003
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Results from occupant survey – views on temperature

0
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Temperature
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Figure by MIT OCW.
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Comparison of UK #1 and UK #1, 
kWh/m2 year

MV std MV GP NV std NV GP Sunbury 
A

Luton

Total 
NG

178 97 151 79 162 140

Total 
elec

226 128 85 54 156 76

L +OE 85 50 65 42 55 51

Refrig 31 14 0 0 29 0

Fans + 
cntls

60 30 8 4 50 5

UK #1 UK #2
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Dealing with conference rooms: 
San Francisco Federal Building
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Façade details coordinated
• Trickle vent and heater

at floor
• Manual operable window

at desk height
• Motorized window above
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Figure by MIT OCW.
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Testing the configuration: predicted 
degree-hours above base temperature

Base 
temperature (oF)

Wind 
only

Internal 
stack

Int & ext 
stack

Int stack + 
wind

Int & ext stack + 
wind

72 288 507 432 279 285

75 80 118 103 76 76

78 13 25 19 11 12
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DOE’s high performance buildings 
data base

4 Times Square 201 kWh/m2

simulated; daylight, fuel cells, 
a little PV

EPA office, NC, 89 kWh/m2

simulated; shading, daylight, 
outside air when suitable
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Chesapeake Bay Foundation, Annapolis 131 kWh/m2 measured 
consumption, 117 kWh/m2 purchased, 10% of consumed energy 
generated from solar thermal and PV on site; shading, daylight, natural 
ventilation, ground-source heat pumps

Chesapeake Bay Foundation

0%
Fans/pumps

Lights Plug loads

Cooling Other

Heating

26%

20%

26%

20%
8%

Figure by MIT OCW.
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Zion National Park Visitor Center

Image courtesy of the National Park Service.
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California Courthouse 
candidate for night cooling

Photograph of courthouse windows.

Image removed for copyright reasons.
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Annual Building-Total Electricity Costs
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Figure by MIT OCW.
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Energy Design Guide for Small 
(< 20,000 ft2) Commercial Buildings

30% savings relative to 1999 standard
Strategies

Reduce loads
Use properly sized, efficient equipment
Refine systems integration

Climate-specific prescriptive 
recommendations: 

roof, walls, floors, slabs, doors 
windows, skylights, lighting 
HVAC, ventilation, and hot water
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4. Good enough?

Lifestyle vs. efficiency
Market acceptance and technology 
gains for lights, appliances and HVAC
Growing but still modest evidence of 
cost-driven efficiency gains
Opportunity to contribute to carbon 
stabilization
Integrated design needs to be pushed
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Floor area counters efficiency gains

Source: LBNL report
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Major potential gains from market 
acceptance

CFL sales up 10x in Northwest, 2001 –
2004, but only 11% of market during 
energy crisis (source: J. DiPeso)

High-efficiency appliances and HVAC are on 
the market now

Clothes washers 2x code efficiency
Residential A/C 1.5x code efficiency

Near-maximum efficiency gains have been 
realized in some cases: fridges, furnaces
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Atmospheric CO2 stabilization wedges 
–Pacala and Socolow

Efficiency option: cut building and appliance emissions by 25% relative to business as usual
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Figure by MIT OCW.
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To-do list
Promote market acceptance

Information
Carbon tax
Emissions trading at micro-level

Work to do
Cheaper, more efficient technologies

Lights
PV, using waste heat
Ventilation: demand-controlled, heat recovery, 
night cooling

Ubiquitous integration tools for new construction and 
retrofits

Individual buildings
Communities (heat capture, local power 
generation)
Component-level optimization is NOT enough!!  
Think at systems level.
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