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The vision for multi-scale modeling


�	 Long-standing dream
Calculate macroscopic properties of materials by theoretical modeling or 
computer simulation from a very fundamental, ab initio perspective 

�	 Strategy to solve this problem is to use methods based on distinct 
paradigms, operating at different scales 

� This progress is possible with 
� The advent of efficient and accurate quantum mechanical methods (e.g. DFT), 
� Development of new empirical and semi-empirical potentials (EAM, ReaxFF…), 
� Enormous growth of computing power enabling studies with billions of particles.  

�	 Critical: Breakthroughs in scale coupling techniques (e.g. QC method) and 
analysis methods for complex systems (centrosymmetry technique) 

Vision: Atomistic simulations of engineering properties at macroscopic 
scales to 1) understand fundamental mechanisms in materials (e.g. 

deformation, assembly), and to 2) predict properties of new materials to 
design new materials 



Definition of multi-scale modeling


�	 Multi-scale computational modeling aims at developing systematic 
techniques for bridging scales, for example between atomistic models 
and continuum models, in order to increase the speed of, or enable 
dynamical calculations 

� Payoff: 
� Continuum level models can simulate large volumes of material, typically at 

the expense of accuracy 
� Conversely, nanoscale models can accurately capture small-scale features, 

but are computationally too slow to simulate large (useful) volumes of 
material 

�	 The goal of multi-scale modeling is to take advantage of the fact that in 
many systems, only a small percentage of the total region is of interest. 

� Main challenges in multi-scale modeling: 
� Determining which regions are simulated with a continuum model or a 

nanoscale model, 
� Adequately model the transition region. 

S. Prudhomme, JP. Bauman and T. Oden	 © 2005 Markus J. Buehler, CEE/MIT 



Concurrent versus hierarchical 

multi-scale simulations


glucose 
monomer unit 

Glycosidic 
bond 

atomistic and M3B meso model  of oligomer 

(Molinero et al.) 

(Pascal et al.) 

DNA 

Hierarchical coupling 

Concurrent coupling 
(QC-Tadmor, Ortiz, Phillips,… 
MAAD-Abraham et al., Liu & Wagner, Park et al.) 

(Buehler et al.)CMDF 

QC 

“Spatial variation of resolution and accuracy“ 

“finer scales train coarser scales” © 2005 Markus J. Buehler, CEE/MIT 



Concurrent versus hierarchical 

multi-scale simulations


FOCUS of this lecture


Concurrent coupling 
(QC-Tadmor, Ortiz, Phillips,… 
MAAD-Abraham et al., Liu & Wagner, Park et al.) 

(Buehler et al.)CMDF 

QC 

“Spatial variation of resolution and accuracy“ 

© 2005 Markus J. Buehler, CEE/MIT 



The concept of concurrent multi-scale 

modeling


�	 The strength of materials is dominated by the existence of cracks or other 
defects (“flaws”) 

�	 Cracks and similar defects lead to stress concentrations, which in turn lead 
to nucleation of dislocations or generation of new material surfaces 

�	 Defects lead to highly localized regions in materials at which material 
undergoes strong deformation; therefore, division of computational domain 
into regions of different accuracy is possible (e.g. dependent on strain 
gradient) 

T.H. Courtney, Mechanical Behavior of Materials, T, Timoshenko, History of 
strength of materials. New York: McGraw Hill © 2005 Markus J. Buehler, CEE/MIT 
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Outline and content (Lecture 3)


�	 Introduction 

�	 Historical perspective on multi-scale modeling and multi-paradigm 
modeling 

� Modeling codes and established methods: 
� MAAD method: Direct handshaking DFT-empirical MD-continuum 

(displacement) 
� QC method (Cauchy-Born rule, local and newer nonlocal formulation) 
� QC-DFT method (extension of QC method to couple in DFT via 

handshake region) 
� Bridging scale method (no handshake region, FE and MD exist 

simultaneously in computational domain) 
� CADD method (handshake FE/mesoscale DD with atomistic) 

�	 Discussion and conclusion 

© 2005 Markus J. Buehler, CEE/MIT 
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Challenges in coupling 

atomistic-continuum scales


Sees: Continuum displacement field, slow oscillations…


Time step O(fs) 

“Atomistic region” 

“Continuum region” 

??? 

Time step O(>ms) 

Sees: Atomic displacement field, fast oscillations of atoms…


� Goal: Avoid wave reflection at MD/FE interface:  Make seamless interface 
(wave reflection may have dramatic impact on results, leads to melting) 

� Earliest attempts by Sinclair (1975), Fischmeister/Gumbsch-FEAt (1991) 

Generally: Handshaking requires physical insight




© 2005 Markus J. Buehler, CEE/MIT

The concept of handshake regions


�	 Coupling between regions of different level of scale/accuracy can be 
achieved using handshake regions 

�	 Exchange information associated with each modeling paradigm (translation 
rules or algorithms) 

Property Atomistic scale Continuum scale 
Temperature Random velocities Thermodynamic energy 

Displacements Atomic displacements 
“fine” 

Continuum displacements 
“coarse” 
(atoms are subset) 

Particle velocity Includes high frequency 
vibrations 

Only low frequency 
vibrations 

Particle forces Atomic forces 
(point-wise “discrete”) 

Continuum forces 
(distributed) 

Development of filter algorithms to handshake regions is essential

Energy conserving formulations for both MD and FEM




From atoms to continuum and back…


Continuum-Atomistic: Difficult, since atomistic contains information 

that continuum does not provide (or only indirectly, e.g. temperature)


“Atomistic region” 

“Continuum region” 

??? 

Atomistic-Continuum: Averaging (e.g. stress, displacement etc.), 

statistical mechanics, once “real” dynamical trajectory is known; 

“filter” useful information

Still: Boundary effects critical!


© 2005 Markus J. Buehler, CEE/MIT 



Domain decomposition algorithms


�	 First step in a concurrent multi-scale model is typically decomposition of the 
computational domain, according to criteria such as 
�	 Foreign atom types (e.g. only method A treats atom type Y and X-Y interactions) 
�	 Strain (atomic) or stress (localization) 
�	 Large forces (between atoms, suggests bond breaking/formation) 
�	 Large strain/cohesive energy 
�	 Or, simply geometric criteria and information (e.g. interfaces, boundaries or 

others) 
�	 The union of many domains associated with fine scale represents the area 

treated by the fine scale method: 

ΩN 

Ω2 
... 

Ω 	= ∩Ωi 
Ω1 

© 2005 Markus J. Buehler, CEE/MIT 



MAAD Method 
Coupling DFT to Continuum


Abraham, Kaxiras, Broughton and coworkers, 1998-2000 

© 2005 Markus J. Buehler, CEE/MIT 



Concurrent Multiscale/Coupling of Length 

Scales: The MAAD method


�	 Finite elements (FE), 
molecular dynamics (MD), 
and tight binding (TB) all 
used in a single calculation 
(MAAD) 

�	 MAAD = macroscopic, 
atomistic, ab initio dynamics 

�	 Atomistics used to resolve 
features of interest (crack) 

�	 Continuum used to extend 
size of domain 

�	 Developed by Abraham, 
Broughton, Kaxiras and co­
workers 

MAAD was one of the first methods of its kind

Received lots of attention


http://www.nnin.org/doc/kaxiras.pdf Abraham, Kaxiras, Broughton and coworkers, 1998-2000 © 2005 Markus J. Buehler, CEE/MIT 

http://www.nnin.org/doc/kaxiras.pdf


Schematic of the MAAD Method


• Provides coupling of TB-MD-FEM 

• Transition regions are very thin (desired due to computational expenses) 

• Displacement and velocity link between scales (“kinematic”) 

• Time step governed by atomistic scale/TB-MD (O(fs)):  Limit to ns 

Expect 
wave 
reflection 
from the 
FE-MD 
interface 

Abraham, Kaxiras, Broughton and coworkers, 1998-2000 
http://www.nnin.org/doc/kaxiras.pdf © 2005 Markus J. Buehler, CEE/MIT 

http://www.nnin.org/doc/kaxiras.pdf


Fundamentals of the MAAD Method


Abraham et al., Europh. Lett., 1998 

Mixed Hamiltonian 
Conserves energy 

FE/MD and MD/TB: “Handshake” regions 

FE mesh down to atomic scale Silogens=H terminated Si atoms (behave Problem: Short-wave length monovalent, hydrogenic Si atoms) oscillations “see” the interface 
TB determines elasticity, then hierarchically transported upwards in scale © 2005 Markus J. Buehler, CEE/MIT 



Example results: MAAD method


Distance versus time history of 
crack tips	 Increased roughness with increased 

crack speed ([100] Si) 
Abraham et al., Europh. Lett., 1998	 © 2005 Markus J. Buehler, CEE/MIT 



Example results: MAAD method


Stress waves propagating through the slab


Blue=high stress, red= low stress


Abraham et al., Europh. Lett., 1998 © 2005 Markus J. Buehler, CEE/MIT 



The quasicontinuum method (QC)

Coupling empirical potentials (EAM) to 
continuum (FE) 
http://www.qcmethod.com/qcreview.pdf 
http://www.qcmethod.com/ 

© 2005 Markus J. Buehler, CEE/MIT 

http://www.qcmethod.com/qcreview.pdf
http://www.qcmethod.com/


Historical perspective: 

Development of QC


� Key idea: Selective representation of atomic degrees of freedom 
� Instead of treating all atoms making up the system, a small relevant subset 

of atoms is selected to represent, by appropriate weighting, the energetics of 
the system as a whole. 

� Based on their kinematic environment, the energies of individual
"representative atoms" are computed either in nonlocal fashion in 
correspondence with straightforward atomistic methodology or within a local 
approximation as befitting a continuum model. 

� The representation is of varying density with more atoms sampled in highly 
deformed regions (such as near defect cores) and correspondingly fewer in 
the less deformed regions further away, and is adaptively updated as the 
deformation evolves. 

Development history: Early stages 
�	 The QC method was originally developed by Dr. Ellad B. Tadmor as part of 

his Ph.D. research at the department of Mechanics of Solids and Structures
at Brown University between 1992 and 1996 under the advisement of Prof. 
Michael Ortiz and Prof. Rob Phillips. 

�	 The method was applied to single crystal fcc metals and shown to reproduce 
Lattice Statics results for a variety of line and surface defects and used to 
study nanoindentation in thin films. 

Taken from: www.qcmethod.org	 © 2005 Markus J. Buehler, CEE/MIT 
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QC method: Fundamentals


� QC provides alternative to handshaking 
� Basic idea: Obtain FE stiffness matrix on the fly based on atomic 

lattice/potential (no a priori assumptions) 
� Zero temperature relaxation technique 
� Elastic energy used in FEM region is computed by applying the FEM 

interpolated displacement field (via Cauchy-Born rule) to a reference system 
of atoms interacting by MD forces, e.g. based on EAM potential 

� Difficulties: 
� No thermal fluctuations, since atoms are at reference positions (displaced) 
� “Ghost forces” due to discreteness in FE setup, and the problem that the MD 

probing is based on discrete displacement fields 

?? Cauchy-Born rule 
Provides “constitutive 
equation on the fly” 

F 

Cauchy-Born rule: Hypothesizes that the infinite crystal underlying each 

continuum particle deforms according to a locally uniform, continuum 


deformation gradient F; used to extract constitutive law




QC method: Fundamentals


In Bravais lattice, lattice vectors deform by deformation gradient F


Due to periodicity of Bravais lattice, this leads to strain energy per atom is


May calculate continuum Cauchy stress at the deformed configuration


This represents the “local” QC formulation


© 2005 Markus J. Buehler, CEE/MIT 



Example application: 

Deformation of thin films (geometry)


σ σ 

σ 
σ 

tilt GBs 
6°..60° 

Schematic 

σ σ⊥ ⊥ ⊥ ⊥⊥ ⊥ ⊥ ⊥  ⊥ ⊥ ⊥ ⊥  

(111) 

Deformation is localized to GB 
regions (“cracks”) 

Buehler et al., to appear 2006 

• Biaxial loading by thermal mismatch of film and substrate material: High 
stresses cause severe problems during operation of the device 

• Ultra thin, submicron copper films become critically important in next 
generation integrated circuits (see, e.g. Scientific American, April 2004), 
MEMS/NEMS © 2005 Markus J. Buehler, CEE/MIT 



The Quasicontinuum (QC) Method


Combine atomistic regions embedded 

Thin copper 
film 

(Balk et al., 
MPI-MF) 

in continuum region 
(Buehler et al., 2006) © 2005 Markus J. Buehler, CEE/MIT 



The Quasicontinuum (QC) Method


GB 

3D dislocation junction 
(long-range field critical) 

Dislocation-GB interaction © 2005 Markus J. Buehler, CEE/MIT 



Non-local QC method


� Does not use Cauchy-Born rule as does the local QC method 
� Instead: Use full non-local (atomistic) representation to determine forces 
� Developed by Knap and Ortiz at Caltech (2002-now) 

Features: 

•	 Truly seamless! 

•	 There is no boundary present 
between atomistic and 
continuum region 

•	 Smart scheme to avoid double 
counting of bonds (demarcation) 

Use explicit expression for 
forces on the nodes 
(atomic limit: each node=one 
atom) 
Evaluate in small cluster around node j

© 2005 Markus J. Buehler, CEE/MIT Knap and Ortiz, 2001, JMPS 



Example results: Non-local QC method


Example: Nanoindentation 

3D dislocation structure Load-displacement curve comparing full 
below an indenter atomistic with NL-QC formulation 

Knap and Ortiz, 2001, JMPS © 2005 Markus J. Buehler, CEE/MIT 



QC-DFT method


�	 Multiscale modeling approach that concurrently couples quantum 
mechanical, classical atomistic and continuum mechanics simulations in a 
unified fashion for metals. 

�	 This approach is particular useful for systems where chemical interactions in 
a small region can affect the macroscopic properties of a material. 

�	 Quasi-static conditions: 0K 

“local EAM”=FE 

“nonlocal EAM”=atomistic 

“nonlocal DFT”=QM 
regime 

Gang Lu, Ellad Tadmor, Tim Kaxiras	 © 2005 Markus J. Buehler, CEE/MIT 



QC-DFT method: Example results


EAM-QC


DFT-QC


Gang Lu et al., 2005 

• Dislocation core structures 
obtained from the EAM-based QC 
(top) and the present QCDFT 
method (bottom) 
• The black circles are atoms 

• Contours correspond to out-of­
plane (z) displacement (in Å). 
• Contours clearly indicate the 
splitting of the dislocation. 
• Atoms within the black box in the 
bottom panel are DFT atoms. 

• Note:  The finite element 
mesh serves no other purpose in 
this nonlocal atomistic region 
other than as a guide to the eye to 
help visualize deformation. 

© 2005 Markus J. Buehler, CEE/MIT 



QC-DFT method: Example results


Gang Lu et al., 2005 

• QC-DFT dislocation core structure in the 
presence of a column of H impurities. 
• The circles are Al atoms (black) and H atom 
(white). 
• The black lines are a guide to the eye, indicating 
atomic planes. 

•Charge density distribution in region I in the 
absence (top) and in the presence of one (middle) 
and two H impurity atoms (bottom). 
• The blue spheres are Al atoms and the red 

spheres are H atoms. 

• Gray iso-surfaces illustrate the charge density 

distribution at 0.28 electrons/Å3. 

• Electron density values range from 0 to 0.30 

electrons/Å3.


© 2005 Markus J. Buehler, CEE/MIT 



Various Cauchy-Born based techniques


Atomistically informed FE model 

© 2005 Markus J. Buehler, CEE/MIT 



VIB technique


�	 Developed by Gao and Klein (JMPS, 1998) 
�	 Virtual internal bond method enables immediate link of interatomic potential 

with constitutive FE equation via Cauchy-Born rule, accounting for 
hyperelastic (nonlinear) effects 

�	 Unlike QC, no atomic resolution present 
�	 Represents an attempt to avoid difficulties of FE formulations to model 

fracture (e.g. imposed cohesive surfaces etc.); and make those formulations 
physically sound 

�	 Example: Used to model fracture since the failure of each FE can be 
determined on the fly by instability criterion; no a priori determination of 
fracture surface is required 

�	 Localization (fracture) estimated by determinant of the acoustic tensor 
approaches zero (element itself “breaks”): 

© 2005 Markus J. Buehler, CEE/MIT 



VIB applications


Fracture patterns for different impact velocities 

Klein, Gao, 2001 © 2005 Markus J. Buehler, CEE/MIT 



VIB applications: Onset of instability


Klein, Gao, 2001 

VIB predicts many of the 
experimental observations, 
including reduced instability 
speed and branching patterns 

© 2005 Markus J. Buehler, CEE/MIT 



VIB applications: Local elasticity


Acoustical shear wave speed

Indicates softening at crack tip


Distribution of opening 
stress 

Klein, Gao, 2001 © 2005 Markus J. Buehler, CEE/MIT 



Atomistically informed finite temperature 

FE method (Huang et al.)


Use concept of local harmonic approximation to impose thermal 
fluctuations (only valid for small homologous temperatures) 

“account for atomic vibration”


Helmholtz free energy


Key: 
Use Helmholtz free energy in Cauchy-Born rule instead of potential energy 

Young Huang et al., JEMT, 2005 © 2005 Markus J. Buehler, CEE/MIT 



Atomistically informed finite temperature 

FE method (Huang et al.)


Example: 

• Temperature 
dependence of 
specific heat cv 

• Compare pure MD, 
experiment and new 
multi-scale method 

Huang et al., JEMT, 2005 © 2005 Markus J. Buehler, CEE/MIT 



The CADD approach 

Coupling Discrete Dislocation Dynamics 
with atomistic simulation 

© 2005 Markus J. Buehler, CEE/MIT 



Coupling atomistics-DD/mesoscale

CADD method: Fundamentals


• Method provides interface of DD region with atomistic region 

• Coupling achieved by nodal displacement in handshake region (atomic 
displacement forced to agree with FE displacement, and pad atoms to agree 
with FE displacement) 

Gurtin and Miller, 2004-2005 © 2005 Markus J. Buehler, CEE/MIT 



CADD method: Schematic


Coupling similar to MAAD approach; quasi-static conditions 

Gurtin and coworkers, Brown, 2005 © 2005 Markus J. Buehler, CEE/MIT 



CADD method: Example results


Gurtin and coworkers, Brown, 2005 © 2005 Markus J. Buehler, CEE/MIT 



CADD method: Example results


Gurtin and coworkers, Brown, 2005


Dislocations nucleated in atomistic region move into FE domain © 2005 Markus J. Buehler, CEE/MIT 



Coupling atomistic scale to continuum scale 
at finite temperature 

The Bridging Scale Method (BSM) 

Park, Wagner, Liu © 2005 Markus J. Buehler, CEE/MIT 



Features of the bridging scale method


� FE representation exists everywhere in domain, also where MD is present 
� Use projector operator to represent the displacement field as a orthogonal 

combination at 

� (i) small and 

� (ii) coarse scale


� Advantage:  Atomistic and continuum scale do not have to be integrated 
using same time step (as e.g. in MAAD) 

� High frequency oscillations naturally disappear when leaving the atomistic 
core region (via impedance force) 

� Atomistic region senses finite temperature in FE region via stochastic force 

MD+ 
FE 

FE 

“impedance 
boundary” 

Park, Wagner, Liu © 2005 Markus J. Buehler, CEE/MIT 



Eliminating atomistic degrees of freedom


� E.g. Adelman and Doll, 1976, use kernel function resulting in time-history 
dependent force added to boundary atoms (applied to 1D chain);  physical
meaning of the force:  Dissipate energy into the eliminated degrees of 
freedom (avoid wave reflection) 

� Kernel function difficult to obtain analytically
(in particular in higher dimensions); therefore use numerical approaches 
(Cai et al., 2000, E and Huang, 2002) 

� Kernel function for non-nearest neighbor interactions obtained by Park et al.,
2005 (example: use EAM method for gold), computationally very efficient 

FE BCs: Atomistic displacements


??? 

MD boundary condition: FE displacements 
Plus kernel function forces, 
plus stochastic force for EQ 

Park, Wagner, Liu © 2005 Markus J. Buehler, CEE/MIT 



The Bridging scale method: Concept


�	 Based on coarse/fine decomposition of displacement field u(x): 

fine 
u( )x = ( )+ u′u	 x (x) 

coarse 

�	 Coarse scale defined to be projection of MD displacements q(x) 

onto FEM shape functions NI:


u x = ( )= ∑NI ( )( ) Pq x	 x dI 
I 

�	 P minimizes least square error between MD displacements q(x)

and FEM displacements dI


G.J. Wagner and W.K. Liu, “Coupling of atomistic and continuum simulations using a 
bridging scale decomposition”, Journal of Computational Physics 190 (2003), 249-274 © 2005 Markus J. Buehler, CEE/MIT 



The Bridging scale method: Concept


�	 Fine scale defined to be that part of MD displacements q(x) that 
FEM shape functions cannot capture: 

′ = − Pq xu x q x( ) ( ) ( ) 
�	 Example of coarse/fine decomposition of displacement field 

(linearly independent of each other) 

( ) 	 u (x) u′(x)u	 x 

=	 + 

(by G. Wagner, Park) 

Important: Not necessary to refine FEM mesh to atomic scale © 2005 Markus J. Buehler, CEE/MIT 



Multiscale Lagrangian


�	 Total displacement written as sum of coarse and fine scales: 

u	= Nd + q − Pq 

�	 Write multiscale Lagrangian as difference between system 
kinetic and potential energies: 

L(u,u&) = K (u&) −V (u) 

�	 Multiscale equations of motion obtained via: 

d ⎛ ∂L ⎞ ∂L d ⎛ ∂L ⎞ ∂L 
d t 

⎜
⎝ ∂d& 

⎟
⎠

− 
∂d 

= 0
d t ⎜

⎜
⎝ ∂q& ⎟

⎟
⎠

− 
∂q 

= 0 

FE displacement	 Atomistic displacement 
Slide courtesy H. Park	 © 2005 Markus J. Buehler, CEE/MIT 



Coupled Multiscale Equations of Motion


Interatomic potential, e.g. 

M Aq&& = f int Regular MD 
⎛ 12 6 ⎞

( ) −&&	= T int ( ) 
φLJ r = 4ε ⎜ ⎜⎝

⎛ σ
⎟⎠
⎞ 

⎜⎝
⎛ σ

⎟⎠
⎞ 

⎟M Ad N f u ⎝ r r ⎠

f int = −
∂φ(r) 

∂r 
Coupling term 

�	 First equation is MD equation of motion 
�	 Second equation is FE equation of motion with internal force obtained from 

MD forces 
�	 Kinetic energies (and thus mass matrices) of coarse/fine scales decoupled 

due to bridging scale term “Pq” (!) 
�	 Note: FE equation of motion is redundant if MD and FE exist everywhere 

Slide courtesy H. Park	 © 2005 Markus J. Buehler, CEE/MIT 



Bridging Scale Schematic


MD + FEM 

Area of interest (e.g. crack)

Need atomistic information


FEM M Aq&& = f int


M Ad&& = NTf int (u)


equivalent+ =


Reduced MD & Impedance Force 
+ FEM 

M Aq&& = f int M Ad&& = NTf int (u) 
f imp 

M Aq&& = f int + f imp 

M d&& = NTf int (u)
Slide courtesy H. Park, Wagner et al. Random force (T) A 

© 2005 Markus J. Buehler, CEE/MIT 

MD 

Impedance force 



                  

Impedance force f and kernel θ


� θ is typically a mxm matrix, where m is the number of degrees of freedom 
in the boundary region 

� To obtain θ need to calculate dynamics long enough to capture all 
impedance effects (involving Laplace transform):  Computational 
challenge 

� Karpov, Wagner et al.: For crystalline lattices the impedance force matrix 
is much simplified by relying on lattice response functions (also known as 
lattice dynamics Green’s functions) 

� Then: θ is mBxmB (mB number of DOF in Bravais lattice) 

Example:


… I-2 I-1 I I+1 I+2 … 

1D string of atoms 
Park, Liu, Wagner et al. © 2005 Markus J. Buehler, CEE/MIT 



                

           

One-dimensional example


Semi-discrete EOM: … I-2 I-1 I I+1 I+2 …


… I-2 I-1 I I+1 I+2 … … 
… 

Domain of interest Eliminated degrees 
of freedom 

J2 is a second order Bessel function 

Stiffness coefficients; from potential: 

Repetitive structure 

(ρ density, le length of element) 

Equation accounts for all eliminated nodes 
in FE region (right) 

K = 
∂ 2φ r( ) 

∂ r2 = 
624εσ 12 

r14 − 
168εσ 6 

r8 

Park, Liu, Wagner et al. © 2005 Markus J. Buehler, CEE/MIT 



Wave propagation across 

atomistic-continuum interface


With impedance force No impedance force


Example: 
1D string of 
atoms 

Park, Liu, Wagner et al. © 2005 Markus J. Buehler, CEE/MIT 



BSD: Example application


Original system: 3,000,000 atoms Reveals atomistic 

Reduced to: 27,450 particles structure at the kinks


Bending of a carbon nanotube: Model defects using molecular dynamics 

methods, the rest using FE description;  quasi-static application (0K)


Wagner and Liu, 2004 © 2005 Markus J. Buehler, CEE/MIT 



2D Bridging Scale Dynamic 

Crack Propagation


Problem Description 
• 90,000 atoms, 1,800 finite elements 
(900 in coupled region) 
• Full MD = 180,000 atoms 
• 100 atoms per finite element 
• ΔtFE=40ΔtMD 
• Ramp velocity BC on FEM 

Velocity 

Vmax 

t1 Time 

Park et al., 2005 © 2005 Markus J. Buehler, CEE/MIT 



2D Bridging Scale Dynamic 

Crack Propagation


• Crack propagation just before • Beginning of crack opening complete rupture of specimen 

Park et al., 2005 © 2005 Markus J. Buehler, CEE/MIT 



3D Bridging Scale Dynamic 

Crack Propagation


V(t) 

FEM 

Pre-crack 
MD+FEM


FEM


V(t) 

• 3D FCC lattice 
• Lennard Jones 6-12 potential 
• Each FEM = 200 atoms 
• 1000 FEM, 117000 atoms 
• Fracture initially along (001) plane 

Velocity 

Vmax 

t1 Time 

Park et al., 2005 © 2005 Markus J. Buehler, CEE/MIT 



Initial Configuration and Loading


• Velocity BC applied out of plane (z-direction) 
• All non-equilibrium atoms shown 

Park et al., 2005 © 2005 Markus J. Buehler, CEE/MIT 



3D Bridging Scale Dynamic 

Crack Propagation


• Full MD • Bridging Scale 

Park et al., 2005 © 2005 Markus J. Buehler, CEE/MIT 



3D Bridging Scale Dynamic 

Crack Propagation


• Full MD • Bridging Scale 

Park et al., 2005 © 2005 Markus J. Buehler, CEE/MIT 



Additional references related to the

Bridging Scale Method
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dynamic fracture, Journal of Computational Physics 2005; 207:588-609 

�	 W.K. Liu, E.G. Karpov, S. Zhang and H.S. Park.  An introduction to computational nanomechanics
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Concurrent Atomistic-Continuum Modeling

An Adaptive Multigrid Formulation 


The multigrid idea applied to concurrent Results of adaptive selection of the atomistic 
atomistic-continuum modeling region at the crack tip at various loads 

Slide courtesy R. Picu 
D. Datta, R.C. Picu, M. Shephard, Int. J. Multiscale Comput. Eng., 2004 © 2005 Markus J. Buehler, CEE/MIT 



Outlook: Bridging time scales


�	 Similar to bridging length scales, the bridging of time scales is a similarly 
difficult (maybe more difficult…) matter 

�	 In past years, many methods have been proposed;  among the most 
prominent ones are bias potential methods, temperature accelerated 
dynamics, or parallel replica methods (many more)… 

How to escape from 
local basin? 

Use computational methods to 
achieve rapid escape 

http://www.t12.lanl.gov/home/afv/publications.html; 

http://www.t12.lanl.gov/home/afv/accelerateddynamics.html © 2005 Markus J. Buehler, CEE/MIT
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Outlook: Bridging time scales


�	 Example: 
Temperature accelerated dynamics (TAD); developed by Art Voter 
Can reach up to microseconds and longer, while retaining atomistic length 
scale resolution 

Sample for state transitions at 
high temperature T1) 

Using transition state theory, 
calculate when this event 

System of interest would have happened at low 

(low temperature T0)	
temperature 

http://www.t12.lanl.gov/home/afv/publications.html; 

http://www.t12.lanl.gov/home/afv/accelerateddynamics.html © 2005 Markus J. Buehler, CEE/MIT
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Outlook: Bridging time scales


• Knowing time at 

high temperature 

allows to estimate 

dynamics at lower 

temperature


http://www.t12.lanl.gov/home/afv/publications.html; 

http://www.t12.lanl.gov/home/afv/accelerateddynamics.html © 2005 Markus J. Buehler, CEE/MIT


http://www.t12.lanl.gov/home/afv/publications.html;
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Diffusion of H on Pt: Reactive description

with ReaxFF


(Buehler, Goddard et al., in 
collaboration with  Art Voter, 
LANL) 

ReaxFF interfaced with TAD through CMDF © 2005 Markus J. Buehler, CEE/MIT 



Discussion and conclusion


� Concurrent scale-coupling techniques have evolved significantly in the 
past 10 years 

� Now, robust and stable methods become available applicable to an
increasingly wider range of problems 

�	 Finite temperature applications remain a subject of ongoing research 

�	 Concurrent multi-scale methods are readily available, and simulation 
codes can be downloaded from websites (e.g. www.qcmethod.com) 

�	 However, using the codes can be quite difficult and results should be 
interpreted with care 

�	 Some researchers think that concurrent coupling is difficult and
associated with many numerical and physical difficulties, and therefore 
favor hierarchical methods as a cleaner way to convey information 
across the scales 

© 2005 Markus J. Buehler, CEE/MIT 
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