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Outline


1.	 Introduction to Mechanics of Materials 
Basic concepts of mechanics, stress and strain, deformation, strength and
fracture 
Monday Jan 8, 09-10:30am 

2.	 Introduction to Classical Molecular Dynamics
Introduction into the molecular dynamics simulation; numerical techniques
Tuesday Jan 9, 09-10:30am 

3.	 Mechanics of Ductile Materials 
Dislocations; crystal structures; deformation of metals 
Tuesday Jan 16, 09-10:30am 

4.	 The Cauchy-Born rule
Calculation of elastic properties of atomic lattices
Friday Jan 19, 09-10:30am 

5.	 Dynamic Fracture of Brittle Materials
Nonlinear elasticity in dynamic fracture, geometric confinement, interfaces
Wednesday Jan 17, 09-10:30am 

6.	 Mechanics of biological materials
Monday Jan. 22, 09-10:30am 

7.	 Introduction to The Problem Set 
Atomistic modeling of fracture of a nanocrystal of copper.

Wednesday Jan 22, 09-10:30am


8.	 Size Effects in Deformation of Materials 
Size effects in deformation of materials: Is smaller stronger?
Friday Jan 26, 09-10:30am 
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Review


Continuum Atomistic

mechanics modeling

div σ = -ρg F=ma 

Fracture Beam Equations of Numerical 
mechanics bending motion issues 

(stress field) (parallelization, 
integration..)

Energy Cauchy-
approach Born-rule 

Beam Virial Interatomic 
bending stress potential Dislocation LJ, EAMmechanics 
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Outline and content (Lecture 5)


�	 Topic: Elasticity in biological materials:  Entropic versus energetic
contributions 

�	 Examples: Deformation of collagen, vimentin, …: Protein mechanics 

�	 Material covered: Covalent bonding and models, chemical
complexity, reactivity, molecular potentials: CHARMM 

�	 Important lesson: Models for bonding in proteins, entropic vs. 
energetic elasticity 

�	 Historical perspective: AFM, single molecule mechanics 
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� Very brief review: 

Material covered in last 2-3 lectures 
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Dislocation nucleation from a crack tip


copper


Large shear stress 

Ductile 
vs. brittle 
Depends on atomic 
behavior at crack tip 
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Ductile materials are governed by the 

motion of dislocations: Introduction


Burgers vector 
b 

Dislocations are the discrete entities that carry plastic (permanent) 

deformation; measured by “Burgers vector”


http://www.people.virginia.edu/~lz2n/mse209/Chapter7.pdf © 2007 Markus J. Buehler, CEE/MIT 
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Brittle or ductile?


Critical conditions for 
dislocation nucleation / 
beginning of fracture 

Rice-Thomson model 
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Rice-Peirls model 



Strengthening mechanisms 
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Final sessile structure


Vacancy tubes 

Partial dislocations 

Partial 
point defects 

Sessile 
dislocations 
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Energy approach to elasticity
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Energy approach to elasticity


1st law of TD 

2nd law 
Applied force 

Change in entropy is always greater or equal than the entropy 
supplied in form of heat; difference is due to internal 
dissipation 

Dissipation rate 

External work rate 

Dissipation rate after consider 1st law of TD: 
Dissipation rate=External work rate 
-change in usable energy U-TS` 

or 
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Energy approach to elasticity


Elastic deformation (no dissipation by definition):


Assume only internal energy change


Expand equation 
dU/dt = dU/dx dx/dt 

Therefore: If applied force equals change in free energy of the system, have elastic 
deformation` 

With strain energy density: 
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Cauchy-Born rule


�	 Idea: Use thermodynamic approach to develop expression of elasticity 
of a atomic microstructure, provided a specific interatomic potential 

�	 Assuming locally homogeneous deformation, take a unit cell 
representation (typically PBCs) and express free energy density as a 
function of strain tensor 

�	 This provides direct link between interatomic potential and constitutive 
behavior 

�	 For example: FCC crystal and EAM potential – can calculate elastic 
properties directly 
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Cauchy-Born rule


� Idea: Express elastic energy (strain energy density) for a atomistic 
representative volume element as a function of macroscopic applied strain 

U(l) a function of deformation 
gradient 

� DΩ: Mapping function, e.g. 


� Impose macroscopic deformation gradient on atomistic volume element,
then calculate atomic stress – this corresponds to the macroscopic stress 

� Strictly valid only far away from defects in periodic lattice (homogeneous 
deformation, perfect lattice, amorphous solid-average) 

� Allows direct link of potential to macroscopic continuum elasticity 
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1D example: Cauchy-Born rule


� Impose homogeneous strain field on 1D string of atoms 
� Then get σ ij = cijklε kl 

from that (1+ε) r0 
1 32 

r0 

Φ(ε ) = 
1 φ(r) = 

1 φ((1+ ε ) ⋅ r0 ) Strain energy density 
r0 ⋅ D r0 ⋅ D function 

r0 ⋅ D Atomic volume
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� Detailed write-up on 1D / 2D Cauchy-Born 
rule is included on line 
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� Mechanics of biological materials


Images removed due to copyright restrictions. 
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Example: Stretching of proteins


Images removed due to copyright restrictions. 

Physical origin? 
Soft matter 
Nonlinear 
Viscoelastic (time dependent) 
… 
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Additional Reading


Book Chapters 

T. Courtney, Mechanical Behavior of Materials 

Chapter 2


D.I. Bower 

An Introduction to Polymer Physics (Chapter 6 [+7 and 3])


D. Boal

Mechanics of the Cell (Chapters 1+2)


D. Whitford

Proteins – Structures and Function (Chapters 1-4)
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Physical fundamentals of elasticity


�	 Interactions between atoms, molecules and/or particles
govern the elastic response of materials 

�	 For a fundamental understanding of elasticity, need to
consider atomic bonding (chemistry or quantum
mechanics) 

�	 Elastic response is governed by change of free energy as
a function of deformation (yields stress versus strain);
second derivative of free energy with respect to strain
yields Young’s modulus 

- Polymers 
F(T,V) = U − TS	 - Biological structures and 

materials (proteins, DNA, …) 
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Extension ratios: Large-strain deformation


ε ii =
∂ui 

∂xi 

l0 

l 

Extension ratio


λ = l / l0 

λi = 1+ ∆ i 
ε ii = ε i = ∆ i 

In small-strain elasticity 

0 
∆ i → 0 Leads toλi 

2 = 1+ 2 
(small strains) 

λi 
2 = 1+ 2∆ i 

λi 
Extension ratios in three directions; pure tensile stress 

© 2007 Markus J. Buehler, CEE/MIT state (directions of principal stress) 
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Strain energy functions


�	 Phenomenological theory that uses the concept of strain-
energy functions 

U	= f (λi ) 

�	 Shear strains are assumed to be zero (coordinate system
of principal stresses) 

�	 U is (physically) not equivalent to the thermodynamic
internal energy function;
instead it is a function that maps changes in entropy and
internal energy into a mathematical function
(phenomenological model) – free energy density! 

� Examples: Rivlin, Neo-Hook, …
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Example: Neo-Hookean Solid


C(λ
21
 3)

Express “strain energy density” as a function of extension ratios  λi

C is a constant (parameter) that is related to the 
Young’s modulus (will be derived later) 

The SED function is used to calculate the stress for a given 

(note: 2nd derivatives=modulus=not constant!!)

2λ λ3 
2
2 

deformation state 

U
 −
+
 +
=
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Uniaxial deformation


Incompressible (retain volume during deformation) 

U = C(λ1
2 + λ2

2 + λ3
2 − 3)	 Orthogonal to pulling 

direction: 
σ1 = σ 2 = 0 σ 3 = σ 

1321 =λλλ 21 λλ = λλ = 3 

3λ ( )3/22 −+= λλCU for uniaxial tension 

λ3 = λ2 = 1/ λ 

dU / dλ = 2C(λ −1/ λ2 ) = σ 
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Reduction to small-strain elasticity


Then, the relation between extension ratio and stress 
can be written as 

σ = 2C(λ2 −1/ λ) 

Consider the nominal stress force/unit area of the undeformed 
medium: 

σ = 2C(λ −1/ λ2 ) For small strains: λi = 1+ ε i 

3 
σ = 2C((1 + ε )2 −1/(1 + ε )) ≈ 2C[1+ 2ε − 1( − ε ) + O(0)] 

σ = 6Cε = Eε Hooke’s law (linear elasticity) C = E / 6 
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Entropic change as a function of stretch


High entropy 


Low entropy 
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Entropic change as a function of stretch


Entropic 

regime


Energetic 
regime 
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Statistical theory of rubber elasticity


�	 Based on the assumption that the rubber entropy S can be 
calculated in terms of 

λ = l / l0 

�	 For example, it can be shown that 
2 2 2U = C(λ1 + λ2 + λ3 − 3) C = E / 6 

σ n = C(λ −1/ λ2 ) 

This is the result for a neo-Hookean solid 

(see Courtney, p. 64) 
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Statistical theory of rubber elasticity


Note: No change in elastic energy of molecules


Needed to understand elasticity: Expression of free energy 
as a function of the applied strain! 

Here: Entropic elasticity – therefore change in entropy 
© 2007 Markus J. Buehler, CEE/MIT 



Single freely jointed chain


22 

S = c − kb2r 2


2 3b = 
2nl 2 

Total length: nl=L 

r2 = < rb >= n ⋅ l RMS length of the chain (no force applied) 

n ⋅ l → nl Maximum extension due to force 

Physical meaning of l: Length at which molecular bending is 
uncorrelated 
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Entropic elasticity: Derivation


Freely jointed Gaussian chain with n links and length l each 
(same for all chains in rubber) 

3 end-to-end 
S = c − kb2r 2 where b2 = r distance of

2nl 2 
chain 

2 2 2 2 2 2 2
∆S = −kb ∑(λ1 −1)x + (λ2 −1)y + (λ3 −1)z 
Nb 

© 2007 Markus J. Buehler, CEE/MIT 



Entropic elasticity: Derivation


2 2 2 2 2 2 2∆S = −kb ∑(λ1 −1)x + (λ2 −1)y + (λ3 −1)z 
Nb 

2 2 2 2 2 2 2∆S = −kb Nb [(λ1 −1)< x > +(λ2 −1)< y > +(λ3 −1)< z >] 
< .. > Average values over all Nb chains 

– need multiply by Nb to get total energy 

Isotropic solid: End-to-end distances of the Nb chains are 
directed equally in all directions; therefore 

< x2 >=< y2 >=< z 2 >= 1
3 < rb 

2 > 
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Entropic elasticity: Derivation


square length of totally free chains.


2< rbThe length 
 in the unstressed state is equal to the mean
>


It can be shown that rRMS = n ⋅ l =< < 

rb 
2


2
 >
rb


2
n ⋅ l
<
 >=


1
2
 2
 z
2
 >=
1
3
n ⋅ l
2
< x


/ 2[(λ
21


>=<
 >=<
y
 =
 2
2
b

No explicit dep.
)+ (λ
22
1


2
2 

2
2


−


λ


λ


2
3 

2
3 

2
3 

1
)+ (λ


λ


λ


−
1)]
∆S = −kNb
 −
 on b any more


2
1
N kT (λ
 3)
 C = E / 6
U = −T∆S
= 1

2
 −
+
 +
b


U
=
 2
1
C(λ
 3) σ
 =
 2
(
E / 3)(λ 
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Entropic elasticity


For SED: Free energy density


(
 3)
Young’s modulus
 2
3


2λ λ2


N kT
*


Stiffness is proportional to temperature 

E ~ T


Stiffness is proportional to degree of cross-linking (for ideal 


NbkT λ2
1


C =


U = −T∆S
 1
2
 −
+
 +
=


E / 6

Predictions:


*
N
 Nb /V
E
= 3
 =


network, N* equals twice the cross-link density) 
E ~ N *
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Summary


�	 Developed rigorous link extension ratio and elastic 
properties of rubber-like materials 

�	 Based on statistical theory and by considering changes in 
entropy due to deformation, arrived at an expression for 
the Neo-Hookeian solid 

�	 This enables to link cross-linking density and temperature 
with Young’s modulus 

© 2007 Markus J. Buehler, CEE/MIT 



Persistence length


t(s) tangent slope 

s 

ξp 

ξp = l/2 

The length at which a filament is capable of bending significantly in 
independent directions, at a given temperature. 
This is defined by a autocorrelation function which gives the characteristic 
distance along the contour over which the tangent vectors t(s) become 
uncorrelated © 2007 Markus J. Buehler, CEE/MIT 



Persistence length: Illustration


�	 Bending deformation (R=radius, ΕΙ=flexural rigidity of the rod) 
- energy 

=	EIEbend 2
L
R2 

L 

R 
� Thermal (kinetic) energy per molecule (kinetic theory of gases) 

- energy 3Ekin,mol = kT 
2 

�	 Example: kT~4E-21 J at room temperature 

�	 Persistence length is defined as ξ p = 
EI 
k	T 

(unit: length) 
© 2007 Markus J. Buehler, CEE/MIT 



             

Contour length of molecules


x 

L 

� The contour length of a molecule is the total length in the 
stretched configuration, denoted as L 

� When L << ξ No energetic 
p interactions! 

a filament appears relatively straight. 
� When L	>> ξ p 

a filament adopts more convoluted shapes 

�	 To pull a highly convoluted molecule apart (  L >> ξ p ), a 
force is necessary; define effective spring constant 

3kTksp = 
2Lξ 

F ~ k x x << Lsp 
p	 © 2007 Markus J. Buehler, CEE/MIT 



Worm-like chain model


Freely-jointed rigid 
rods Images removed 

due to copyright restrictions. 

Images removed 
due to copyright restrictions. 

DNA 4-plat electron micrograph 
(Cozzarelli, Berkeley) 

Continuously 
flexible ropes Images removed 

due to copyright restrictions. 

Worm like chain model 
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Worm-like chain model


�	 This spring constant is only valid for small deformations
from a highly convoluted molecule, with length far from its
contour length 

x << L 

�	 A more accurate model (without derivation) is the Worm-like
chain model (WLC) that can be derived from the Kratky-
Porod energy expression (see D. Boal, Ch. 2) 

�	 A numerical, approximate solution of the WLC model: 

kT ⎛ 1 1 1	 ⎞
F =

ξ p ⎝
⎜⎜ 

4 (1− x / L)2 − 
4 

+ x / L 
⎠
⎟⎟ 
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Proteins


�	 An important building block in biological systems are
proteins 

�	 Proteins are made up of amino acids 

�	 20 amino acids carrying different side groups (R) 

�	 Amino acids linked by the amide bond via condensation


�	 Proteins have four levels of structural organization:
primary, secondary, tertiary and quaternary 
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Protein structure


�	 Primary structure: Sequence of amino
acids 

�	 Secondary structure: Protein secondary
structure refers to certain common 
repeating structures found in proteins.
There are two types of secondary 
structures: alpha-helix and beta-pleated 
sheet. 

�	 Tertiary structure: Tertiary structure is the
full 3-dimensional folded structure of the 
polypeptide chain. 

�	 Quartenary Structure:  Quartenary
structure is only present if there is more 
than one polypeptide chain. With multiple
polypeptide chains, quartenary structure is 
their interconnections and organization. 

A A S X D X S L V E 

V H X X 


Image removed 
due to copyright restrictions. 

Image removed
due to copyright restrictions. 

Image removed

due to copyright restrictions.
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20 natural amino acids


Images removed 

due to copyright restrictions. 

Table of amino acid chemical structures. 
See similar image: http://web.mit.edu/esgbio/www/lm/proteins/aa/aminoacids.gif. 
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Hierarchical structure of collagen


Images removed due to copyright restrictions.


Collagen features 
hierarchical structure 

Goal: Understand the 
scale-specific 
properties and cross-
scale interactions 

Macroscopic 
properties of collagen 
depend on the finer 
scales 

Material properties 

are scale-dependent


(Buehler, JMR, 2006) © 2007 Markus J. Buehler, CEE/MIT 



Elasticity of tropocollagen molecules


Sun, 2004

© 2007 Markus J. Buehler, CEE/MIT 



Modeling organic chemistry


Covalent bonds (directional) 
Images removed due to copyright restrictions.	 Electrostatic interactions 

H-bonds 
vdW interactions 

Images removed due to copyright restrictions. 
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Common empirical force fields


Class I (experiment derived, simple form) 
Harmonic terms;� CHARMM 
Derived from 

� CHARMm (Accelrys) vibrational 
� AMBER spectroscopy, gas-

phase molecular 
structures 

� OPLS/AMBER/Schrödinger 
� ECEPP (free energy force field) 

Very system-specific 
� GROMOS 

Class II (more complex, derived from QM) 
Include anharmonic terms 
Derived from QM, more 

� CFF95 (Biosym/Accelrys) 
� MM3 

general 
� MMFF94 (CHARMM, Macromodel…)

� UFF, DREIDING


Images removed 
http://www.ch.embnet.org/MD_tutorial/pages/MD.Part2.html due to copyright restrictions. 
http://www.pharmacy.umaryland.edu/faculty/amackere/force_fields.htm 
http://amber.scripps.edu/ © 2007 Markus J. Buehler, CEE/MIT 
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Model for covalent bonds


Bonding between atoms 

described as combination of 

various terms, describing the 

angular, stretching etc. 

contributions


Courtesy of the EMBnet Education & Training Committee. Used with permission. 
http://www.ch.embnet.org/MD_tutorial/pages/MD.Part2.html 
http://www.pharmacy.umaryland.edu/faculty/amackere/force_fields.htm © 2007 Markus J. Buehler, CEE/MIT 
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Model for covalent bonds


Courtesy of the EMBnet Education & Training Committee. Used with permission.
http://www.ch.embnet.org/MD_tutorial/pages/MD.Part2.html © 2007 Markus J. Buehler, CEE/MIT 
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Review: CHARMM potential

P

o
te

n
ti

a
l 
E
n
e
rg

y
, 
k
c
a
l/

m
o
l

 Chemical type Kbond

 b

o

 C

−C 100 kcal/mole/Å2 1.5 Å 

 C=C 200 kcal/mole/Å2 1.3 Å 

C

≡C 400 kcal/mole/Å2 1.2 Å 

Bond Energy versus Bond length 

0 

100 

200 

300 

400 

0.5 1 1.5 2 2.5 

Bond length, Å 

Different types of C-C 
bonding represented by 
different choices of b0 
and kb; 

Need to retype when 
chemical environment 
changes 

Single Bond 

Double Bond 

Triple Bond

Vbond = Kb (b − bo )
2 

Courtesy of the EMBnet Education & Training Committee. Used with permission.


http://www.ch.embnet.org/MD_tutorial/pages/MD.Part2.html 
http://www.pharmacy.umaryland.edu/faculty/amackere/force_fields.htm © 2007 Markus J. Buehler, CEE/MIT 
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Review: CHARMM potential


Nonbonding interactions 

vdW (dispersive) 

Coulomb (electrostatic) 

H-bonding
http://www.ch.embnet.org/MD_tutorial/pages/MD.Part2.html © 2007 Markus J. Buehler, CEE/MIT 
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UFF “Universal Force Field”


• Can handle complete periodic table 

• Force constants derived using general rules of element, hybridization 
and connectivity 

Features:


• Atom types=elements Pauling-type bond order correction 

• Chemistry based rules 
for determination of 
force constants 

Rappé et al. © 2007 Markus J. Buehler, CEE/MIT 



Alpha helix and beta sheets


Hydrogen bonding 
Image removed e.g. between O and H in H2O

due to copyright restrictions. 
Between N and O in proteins… 

Beta sheet 
Image removed due to copyright restrictions. 

Image removed due to copyright restrictions. 

See: http://www.columbia.edu/cu/biology/courses/c2005/images/3levelpro.4.p.jpg 

Alpha helix © 2007 Markus J. Buehler, CEE/MIT 
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Unfolding of alpa helix structure


Ackbarow and Buehler, 2007 © 2007 Markus J. Buehler, CEE/MIT 



Three-point bending test: 

Tropocollagen molecule


y = 0.8068x 

y = 0.4478x 

y = 0.3171x 

y = 0.1485x 

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

Fo
rc

e 
(p

N
) 

Displacement d 
Force Fappl 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 

Displacement (Angstrom) 
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Three-point bending test: 

Tropocollagen molecule


MD: Calculate bending stiffness; consider different deformation rates


Result: Bending stiffness at zero deformation rate (extrapolation)


Yields: Persistence length – between 3 nm and 25 nm (experiment: 7 nm)
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Stretching experiment: Tropocollagen molecule 

Buehler and Wong, 2007, unpublished © 2007 Markus J. Buehler, CEE/MIT 




