

Nanomechanics of hierarchical biological materials (cont'd)

Lecture 7

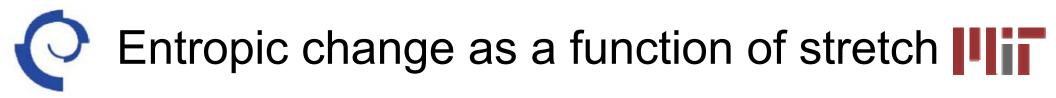
Department of

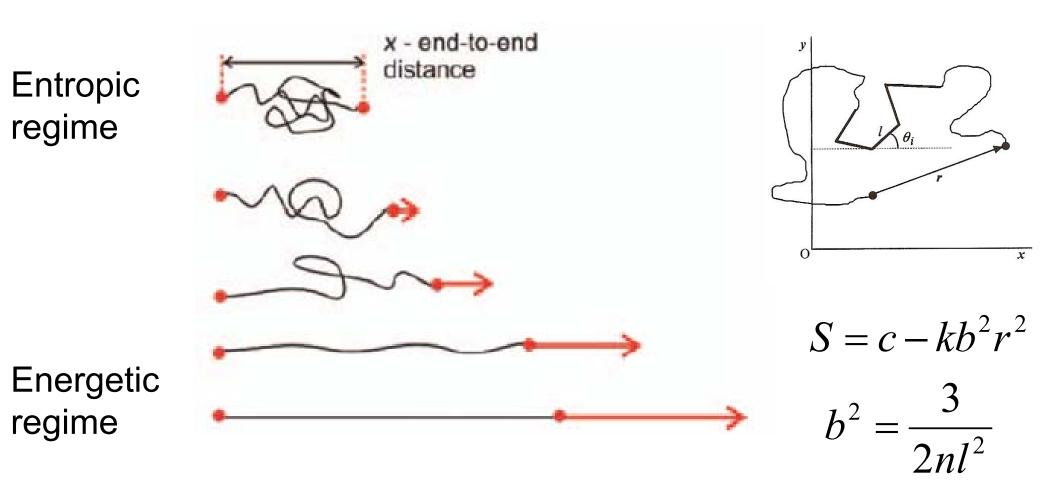
Civil & Environmental Engineering

Markus J. Buehler

Massachusetts Institute of Technology

Introduction to Mechanics of Materials 1. Basic concepts of mechanics, stress and strain, deformation, strength and fracture Monday Jan 8, 09-10:30am **Introduction to Classical Molecular Dynamics** 2. Introduction into the molecular dynamics simulation; numerical techniques Tuesday Jan 9, 09-10:30am **Mechanics of Ductile Materials** 3. Dislocations; crystal structures; deformation of metals Tuesday Jan 16, 09-10:30am The Cauchy-Born rule 4. Calculation of elastic properties of atomic lattices Friday Jan 19, 09-10:30am **Dynamic Fracture of Brittle Materials** 5. Nonlinear elasticity in dynamic fracture, geometric confinement, interfaces Wednesday Jan 17, 09-10:30am **Mechanics of biological materials** 6. Monday Jan. 22, 09-10:30am Introduction to The Problem Set 7. Atomistic modeling of fracture of a nanocrystal of copper. Wednesday Jan 22, 09-10:30am **Size Effects in Deformation of Materials** 8. Size effects in deformation of materials: Is smaller stronger? Friday Jan 26, 09-10:30am





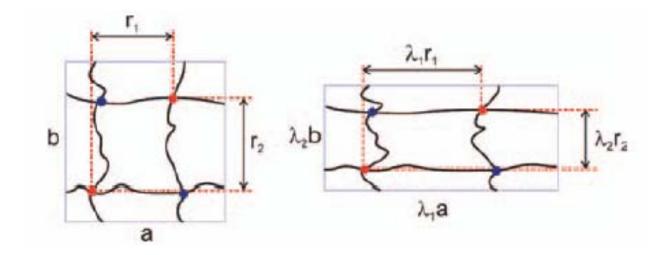
Freely jointed Gaussian chain with *n* links and length *l* each (same for all chains in rubber)

$$S = c - kb^2r^2 \qquad \text{where} \quad b^2 = \frac{3}{2nl^2}$$

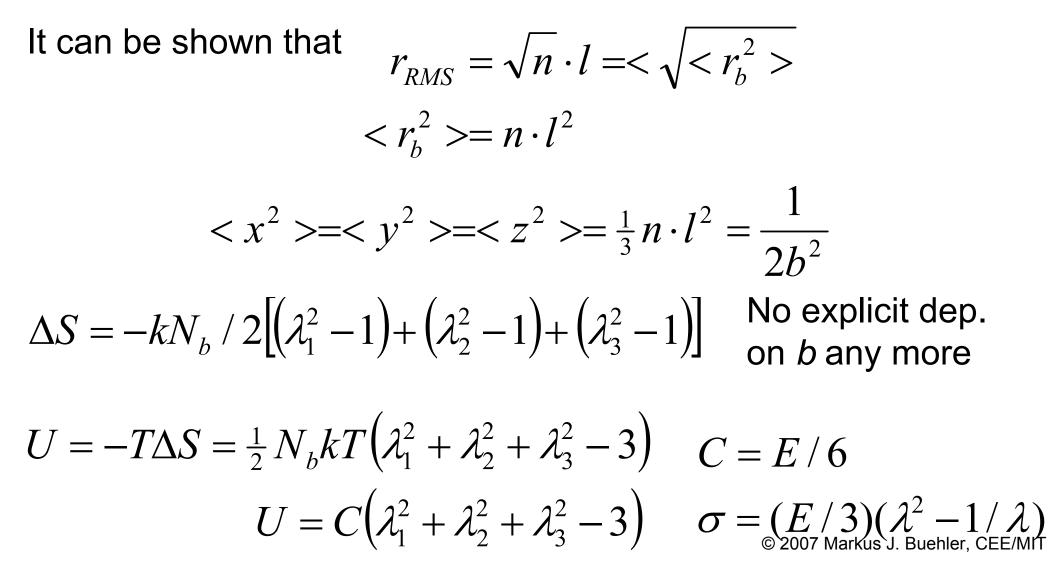
end-to-end distance of chain

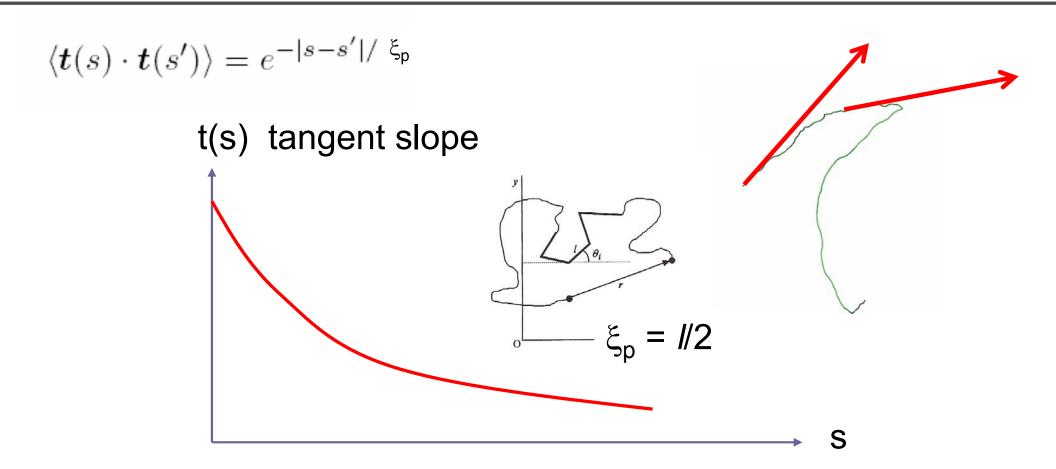
r

$$\Delta S = -kb^2 \sum_{N_b} (\lambda_1^2 - 1)x^2 + (\lambda_2^2 - 1)y^2 + (\lambda_3^2 - 1)z^2$$



The length $< r_b^2 >$ in the unstressed state is equal to the mean square length of totally free chains.

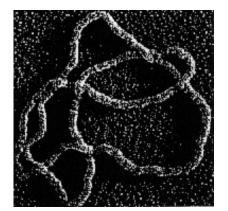


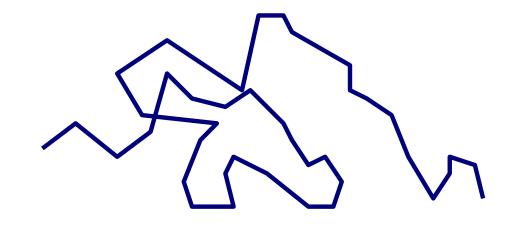


The length at which a filament is capable of bending significantly in independent directions, at a given temperature.

This is defined by a autocorrelation function which gives the characteristic distance along the contour over which the tangent vectors **t(s)** become uncorrelated

Freely-jointed rigid rods

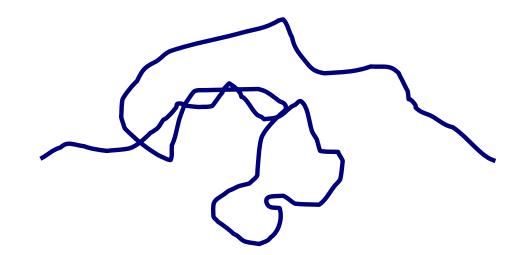




DNA 4-plat electron micrograph (Cozzarelli, Berkeley)

Continuously flexible ropes

Worm like chain model



This spring constant is only valid for small deformations from a highly convoluted molecule, with length far from its contour length

$$x \ll L$$

- A more accurate model (without derivation) is the Worm-like chain model (WLC) that can be derived from the Kratky-Porod energy expression (see D. Boal, Ch. 2)
- A numerical, approximate solution of the WLC model:

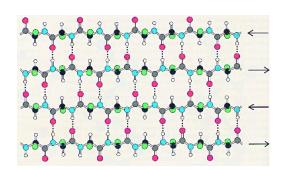
$$F = \frac{kT}{\xi_p} \left(\frac{1}{4} \frac{1}{(1 - x/L)^2} - \frac{1}{4} + x/L \right)$$

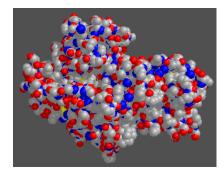
Marko and Siggia, 1995

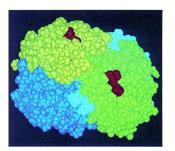
- An important building block in biological systems are proteins
- Proteins are made up of amino acids
- 20 amino acids carrying different side groups (R)
- Amino acids linked by the amide bond via condensation
- Proteins have four levels of structural organization: primary, secondary, tertiary and quaternary

- Primary structure: Sequence of amino acids
- Secondary structure: Protein secondary structure refers to certain common repeating structures found in proteins. There are two types of secondary structures: <u>alpha-helix</u> and <u>beta-pleated</u> sheet.
- Tertiary structure: Tertiary structure is the full 3-dimensional folded structure of the polypeptide chain.
- Quartenary Structure: Quartenary structure is only present if there is more than one polypeptide chain. With multiple polypeptide chains, quartenary structure is their interconnections and organization.

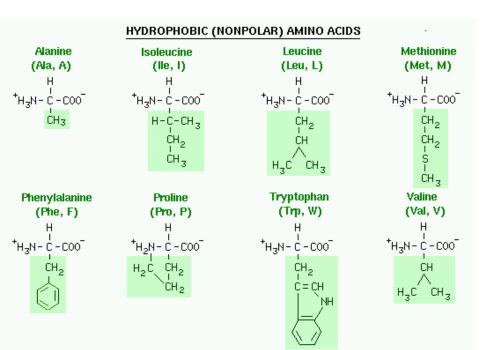
A A S X D X S L V E V H X X

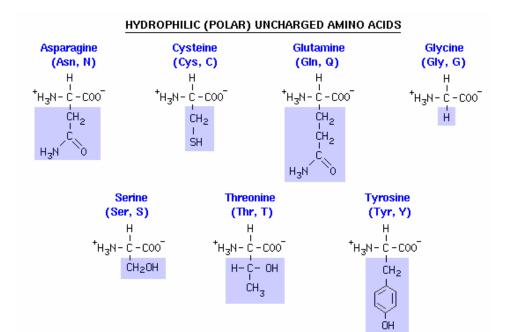


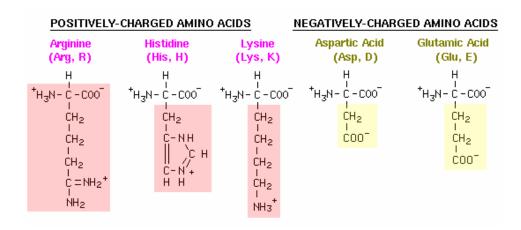


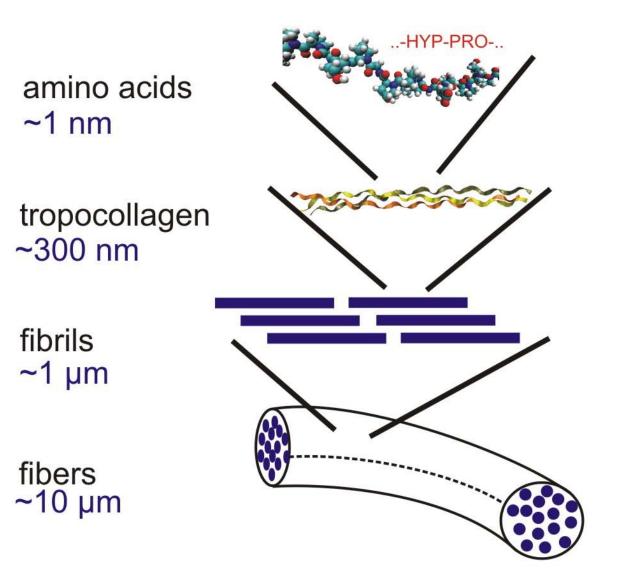


20 natural amino acids







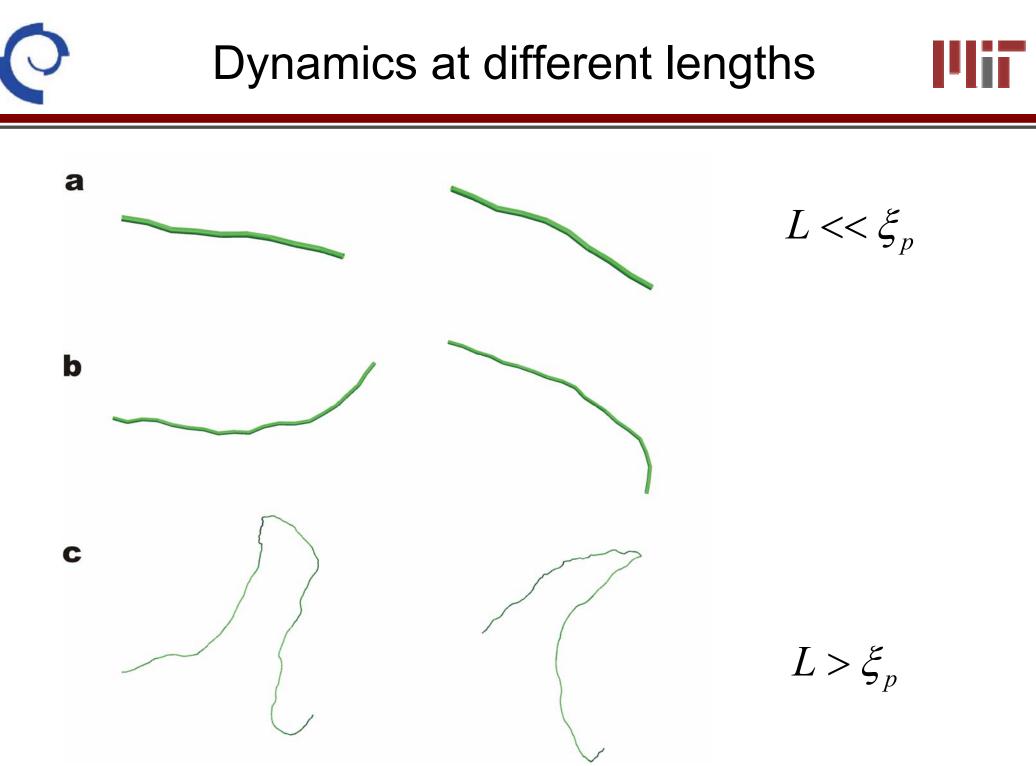


Collagen features hierarchical structure

Goal: Understand the *scale-specific properties* and *cross-scale interactions*

Macroscopic properties of collagen depend on the finer scales

Material properties are scale-dependent



(Buehler, JMR, 2006)

© 2007 Markus J. Buehler, CEE/MIT

Elasticity of tropocollagen molecules

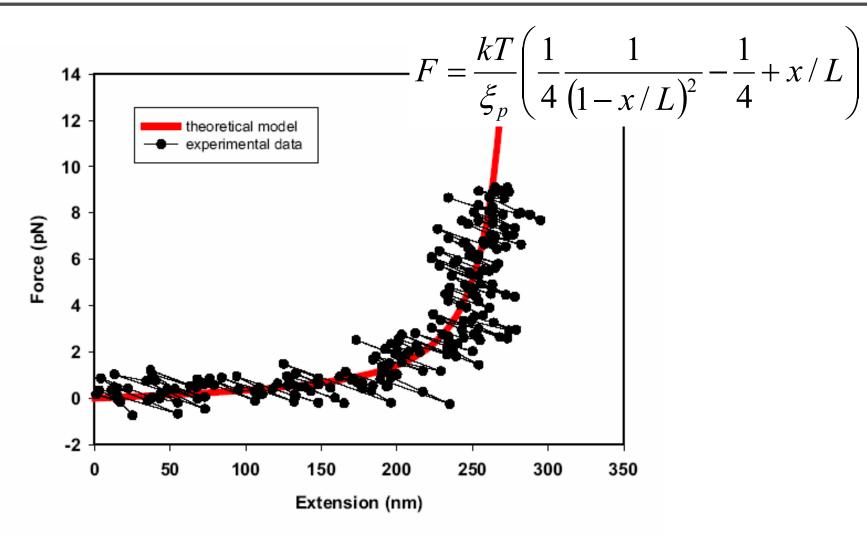
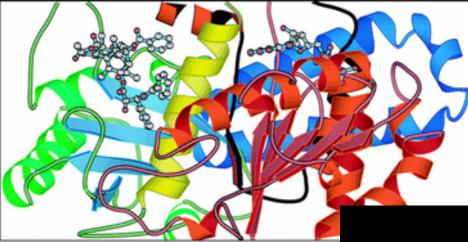
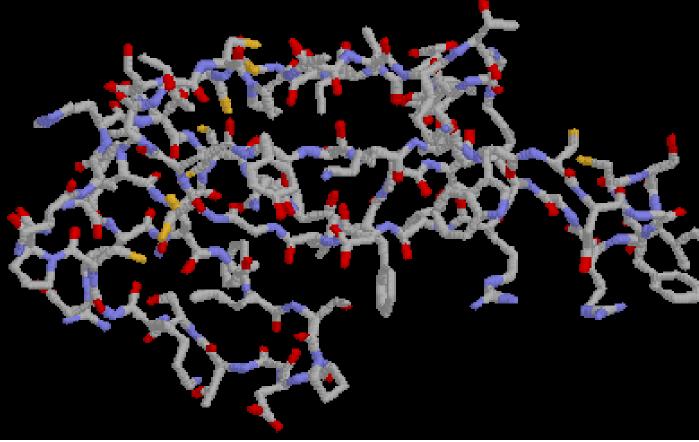


Fig. 2. The force-extension curve for stretching a single type II collagen molecule. The data were fitted to Marko–Siggia entropic elasticity model. The molecule length and persistence length of this sample is 300 and 7.6 nm, respectively.

Modeling organic chemistry



Covalent bonds (directional) Electrostatic interactions H-bonds vdW interactions

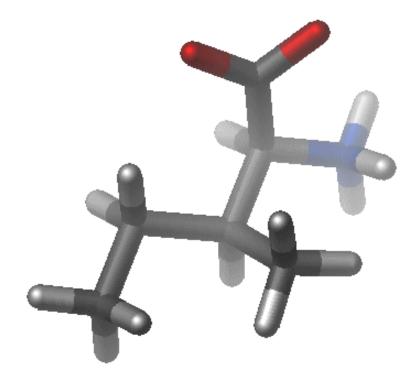


Model for covalent bonds

$$V(R) = E_{bonded} + E_{non-bonded}$$

$$E_{bonded} = E_{bond-stretch} + E_{angle-bend} + E_{rotate-along-bond}$$

Bonding between atoms described as combination of various terms, describing the angular, stretching etc. contributions



Courtesy of the EMBnet Education & Training Committee. Used with permission. <u>http://www.ch.embnet.org/MD_tutorial/pages/MD.Part2.html</u> <u>http://www.pharmacy.umaryland.edu/faculty/amackere/force_fields.htm</u>

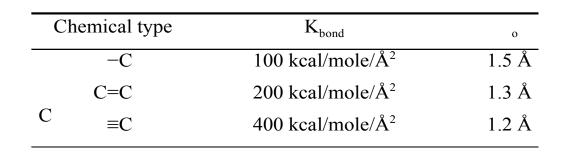
Model for covalent bonds

$$E_{bond-stretch} = \sum K_b (b-b_0)^2 \qquad E_{bond-bend} = \sum_{angles} K_\theta (\theta-\theta_0)^2$$

$$E_{rotate-along-bond} = \sum_{1,4 pairs} K_\rho (1-\cos(n\phi))$$

Courtesy of the EMBnet Education & Training Committee. Used with permission.

http://www.ch.embnet.org/MD tutorial/pages/MD.Part2.html



Bond Energy versus Bond length С 400 Potential Energy, kcal/mol 300

-Single Bond 200 Double Bond Triple Bond 100 0 0.5 2 1.5 2.5 1

Bond length, Å

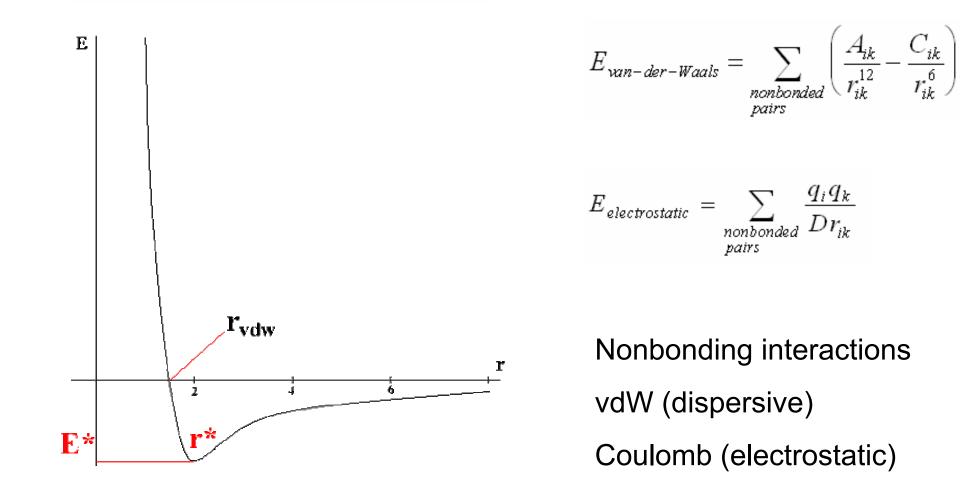
Different types of C-C bonding represented by different choices of b₀ and $k_{\rm h}$;

Need to retype when chemical environment changes

 $V_{bond} = K_b (b - b_o)^2$

6

$$E_{non-bonded} = E_{van-der-Waals} + E_{electrostatic}$$



© 2007 Markus J. Buehler, CEE/MIT

H-bonding

DREIDING potential

$E = E_{\rm val} + E_{\rm nb}$	
$E_{\rm val} = E_{\rm B} + E_{\rm A} + E_{\rm T} + E_{\rm l}$	
$E_{\rm nb} = E_{\rm vdw} + E_{\rm Q} + E_{\rm hb}$	
$E = \frac{1}{2}k_{\rm e}(R - R_{\rm e})^2$	
$E_{IJK} = \frac{1}{2} C_{IJK} [\cos \theta_{IJK} - \cos \theta_J^0]^2$!

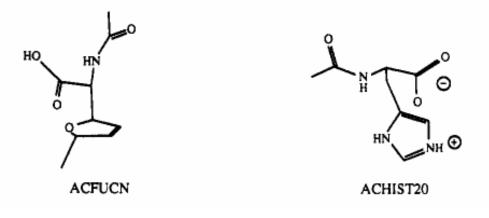


TABLE I:	Geometric	Valence	Parameters	for	DREIDING

atom	bond radius R ⁰ ₁ , Å	bond angle, deg	atom	bond radius R ⁰ _I , Å	bond angle, deg
H_	0.330	180.0	Si3	0.937	109.471
HHB	0.330	180.0	P_3	0.890	93.3
H_b	0.510	90.0	S_3	1.040	92.1
B_3	0.880	109.471	Cl	0.997	180.0
B_2	0.790	120.0	Ga3	1.210	109.471
C_3	0.770	109.471	Ge3	1.210	109.471
C_R	0.700	120.0	As3	1.210	92.1
C_2	0.670	120.0	Se3	1.210	90.6
C_1	0.602	180.0	Br	1.167	180.0
N_3	0.702	106.7	In3	1.390	109.471
N_R	0.650	120.0	Sn3	1.373	109.471
N_2	0.615	120.0	Sb3	1.432	91.6
N_1	0.556	180.0	Te3	1.280	90.3
O_3	0.660	104.51	Ι_	1.360	180.0
O_R	0.660	120.0	Na	1.860	90.0
O_2	0.560	120.0	Ca	1.940	90.0
0_1	0.528	180.0	Fe	1.285	90.0
F_	0.611	180.0	Zn	1.330	109.471
Al3	1.047	109.471			

 $K_{IJ}(1) = 700 \, (\text{kcal/mol})/\text{Å}^2$

TABLE III: Valence Force Constants for DREIDIN
--

bonds		
n = 1	$K = 700 (\text{kcal/mol})/\text{Å}^2$	D = 70 kcal/mol
n = 2	$K = 1400 (\text{kcal/mol})/\text{Å}^2$	D = 140 kcal/mol
n = 3	$K = 2100 (\text{kcal/mol})/\text{Å}^2$	D = 210 kcal/mol
angles	$K = 100 (\text{kcal/mol})/\text{rad}^2$	
	© 2007 Markı	us J. Buehler CEE/MI

- Can handle complete periodic table
- Force constants derived using general rules of element, hybridization and connectivity

$$E_{\rm R} = \frac{1}{2}k_{\rm IJ}(r - r_{\rm IJ})^2$$

 $r_{11} = r_1 + r_1 + r_{BO} + r_{EN}$

Features:

- Atom types=elements
- Chemistry based rules for determination of force constants

Pauling-type bond order correction

$$r_{\rm BO} = -\lambda(r_{\rm I} + r_{\rm J}) \ln (n)$$

$$r_{\rm EN} = r_{\rm I} r_{\rm J} (\sqrt{\chi_{\rm I}} - \sqrt{\chi_{\rm J}})^2 / (\chi_{\rm I} r_{\rm I} + \chi_{\rm J} r_{\rm J})$$

$$k_{\rm IJ} = \left(\frac{\partial^2 E_{\rm r}}{\partial R^2}\right)_0 = 2G \; \frac{Z_{\rm I}^* Z_{\rm J}^*}{R^3} = 664.12 \frac{Z_{\rm I}^* Z_{\rm J}^*}{r_{\rm IJ}^3}$$

Rappé et al.

Class I (<u>experiment derived</u>, simple form)

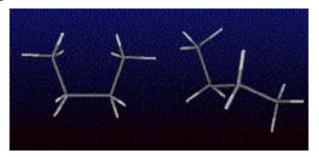
- CHARMM
- CHARMm (Accelrys)
- AMBER
- OPLS/AMBER/Schrödinger
- ECEPP (free energy force field)
- GROMOS

Class II (more complex, <u>derived from QM</u>)

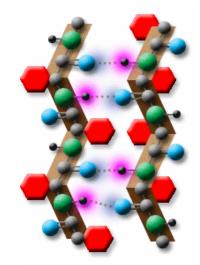
- CFF95 (Biosym/Accelrys)
- MM3
- MMFF94 (CHARMM, Macromodel...)
- UFF, DREIDING

http://www.ch.embnet.org/MD_tutorial/pages/MD.Part2.html http://www.pharmacy.umaryland.edu/faculty/amackere/force_fields.htm http://amber.scripps.edu/ Harmonic terms; Derived from vibrational spectroscopy, gasphase molecular structures Very system-specific

Include anharmonic terms Derived from QM, more general

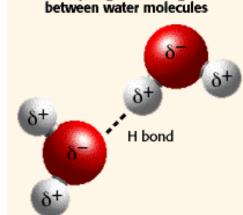


© 2007 Markus J. Buehler, CEE/MIT

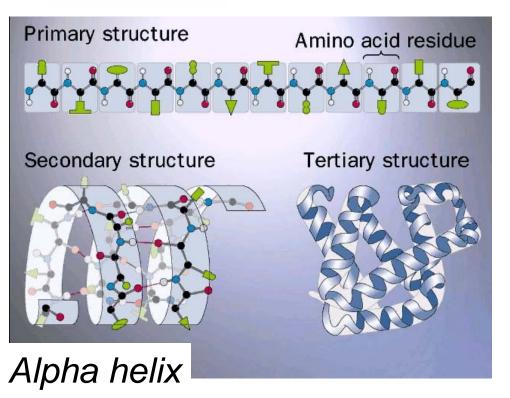


Hydrogen bonding

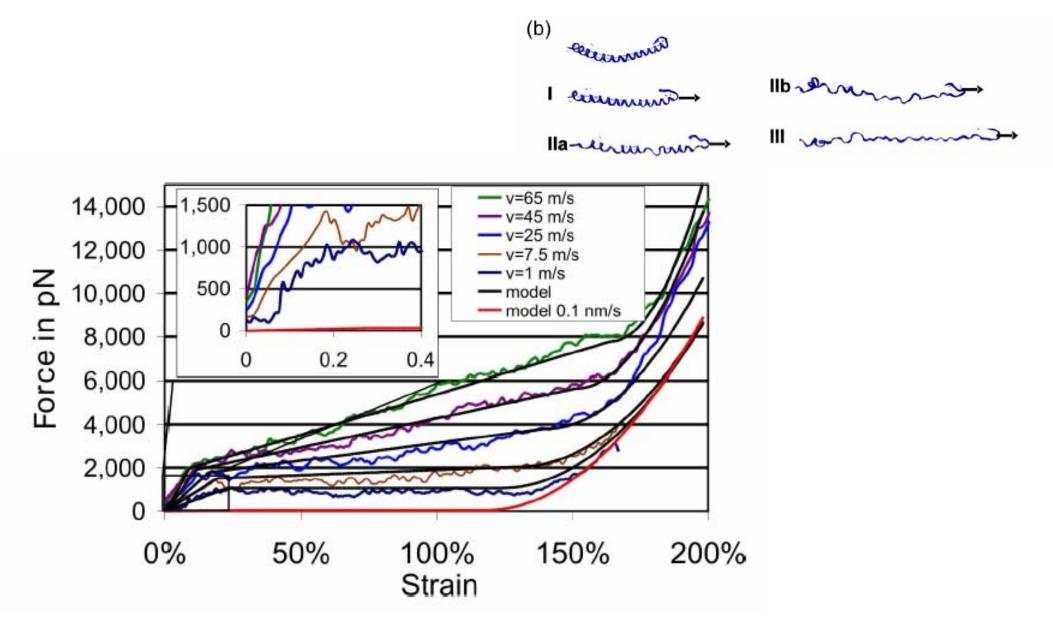
e.g. between O and H in H_2O Between N and O in proteins...

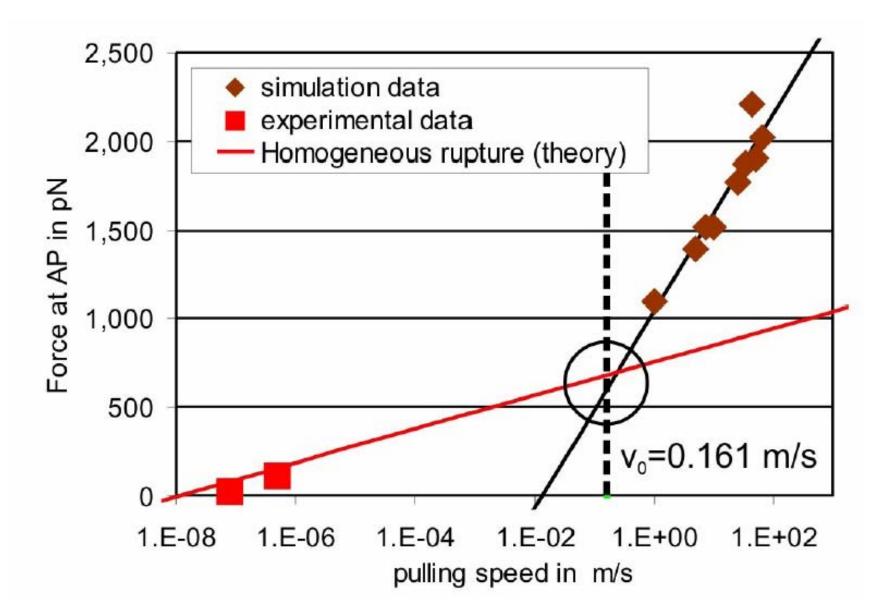


Hydrogen bonding



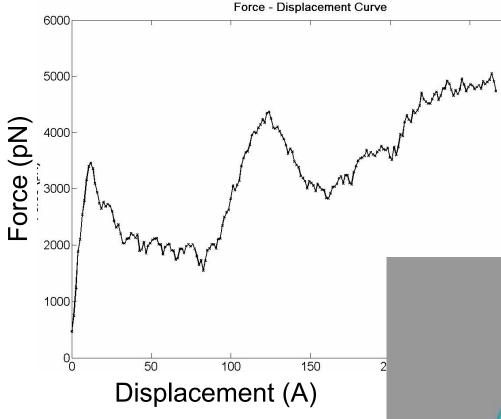
Beta sheet C-terminus N-terminus Three polypeptide chains forming eet structure.



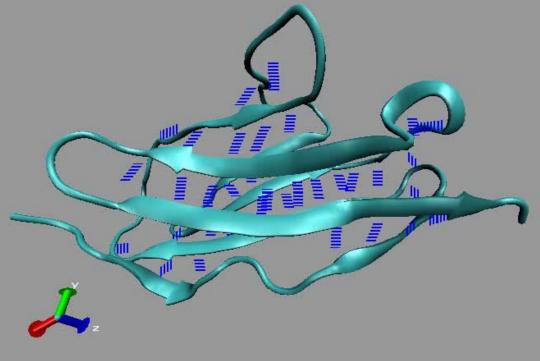


Ackbarow and Buehler, 2007

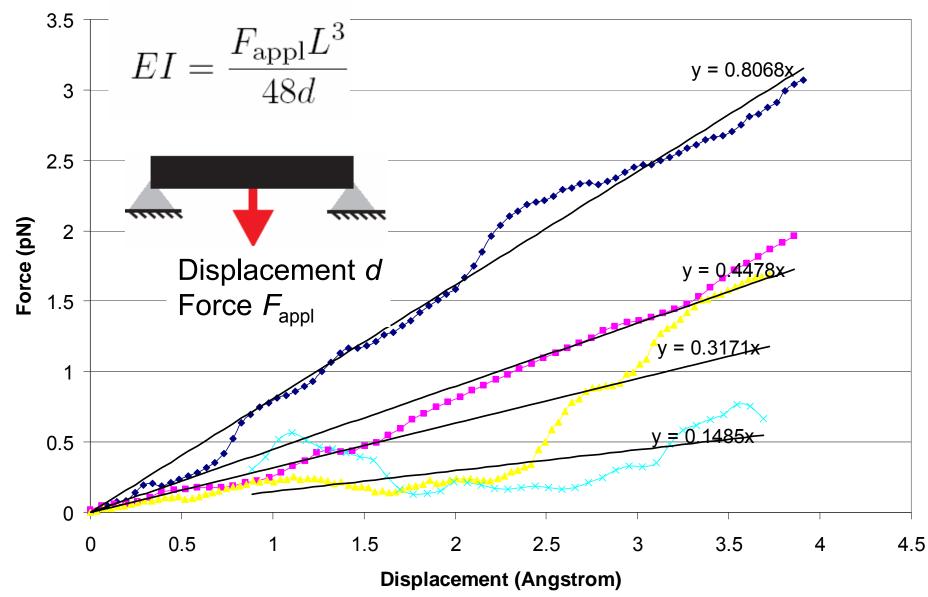




Titin I27 domain: Very resistant to unfolding due to parallel Hbonded strands



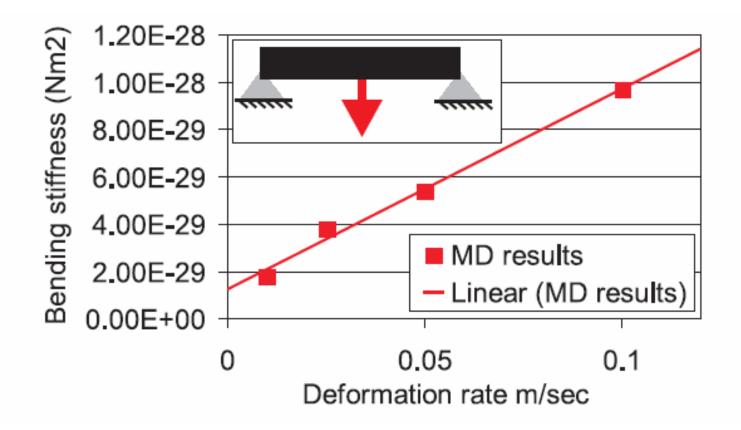
Three-point bending test: Tropocollagen molecule



Buehler and Wong, 2007

© 2007 Markus J. Buehler, CEE/MIT

Three-point bending test: Tropocollagen molecule

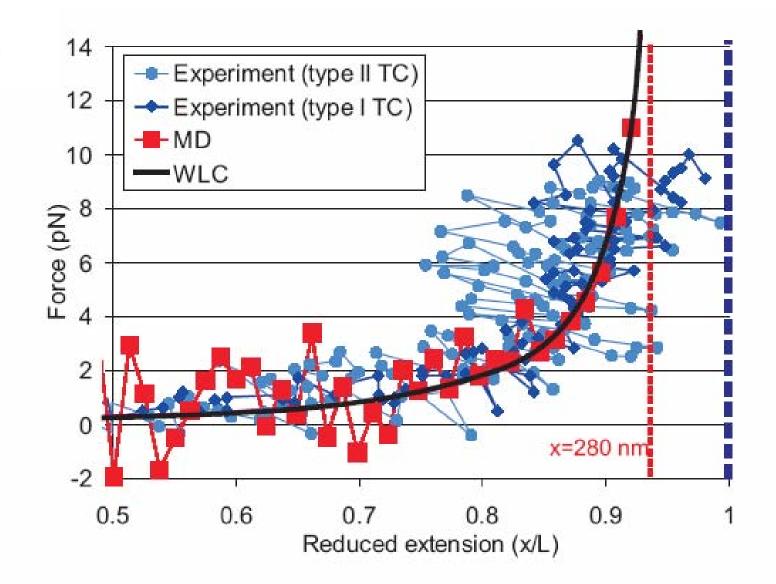


MD: Calculate bending stiffness; consider different deformation rates

Result: Bending stiffness at zero deformation rate (extrapolation)

Yields: Persistence length – between **3 nm** and **25 nm** (experiment: **7 nm**) Buehler and Wong, 2007

OStretching experiment: Tropocollagen molecule

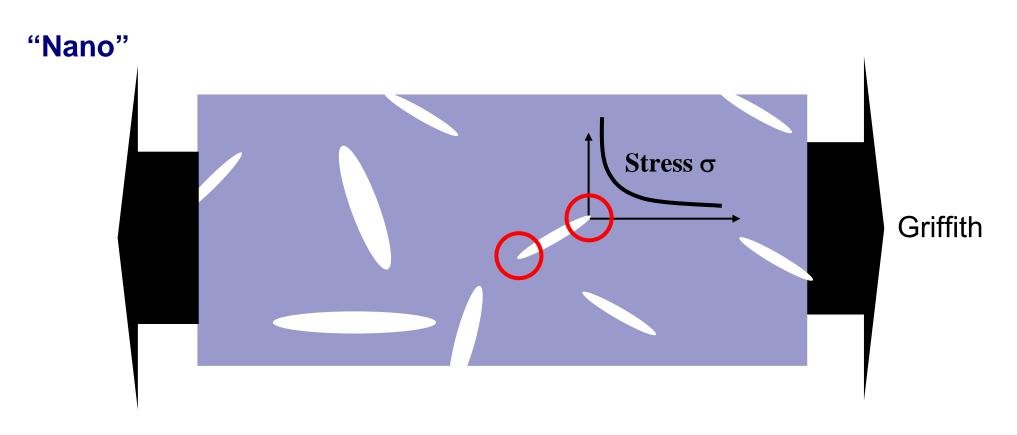


Buehler and Wong, 2007, under submission

Fracture at ultra small scales Size effects

© 2007 Markus J. Buehler, CEE/MIT

- Failure mechanism of ultra small brittle single crystals as a function of material size
- Properties of adhesion systems as a function of material size: Is Griffith's model for crack nucleation still valid at nanoscale?



• Inglis (~1910): Stress infinite close to a elliptical inclusion once shape is crack-like

"Inglis paradox": Why does crack not extend, despite infinitely large stress at even small applied load?

 Resolved by Griffith (~ 1950): Thermodynamic view of fracture

Infinite peak stress

$$\sigma_{yy} = \sigma_0^* \left(1 + 2\sqrt{\frac{a}{\rho}} \right)$$

 $G = 2\gamma$

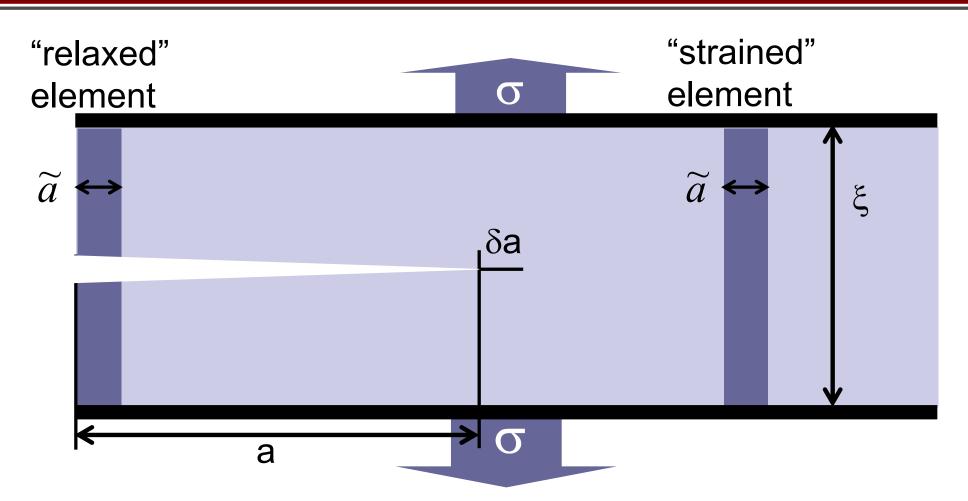
"Griffith paradox": Fracture at small length scales? Critical applied stress for fracture infinite in small (nano-)dimensions (ξ =O(nm))!

Considered here

Buehler et al., MRS Proceedings, 2004 & MSMSE, 2005; Gao, Ji, Buehler, MCB, 2004

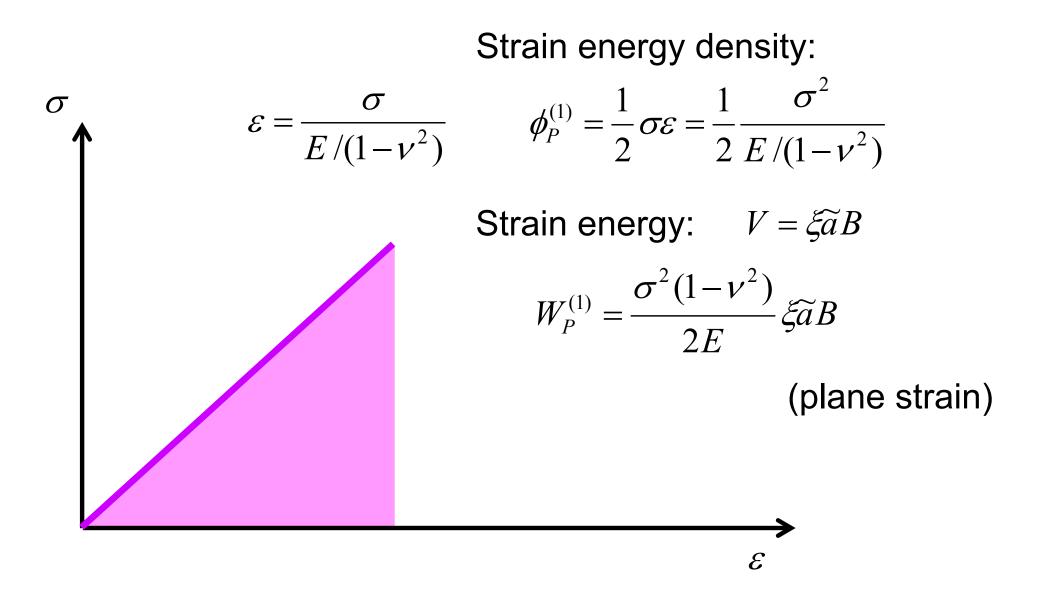
© 2007 Markus J. Buehler, CEE/MIT

Thin strip geometry

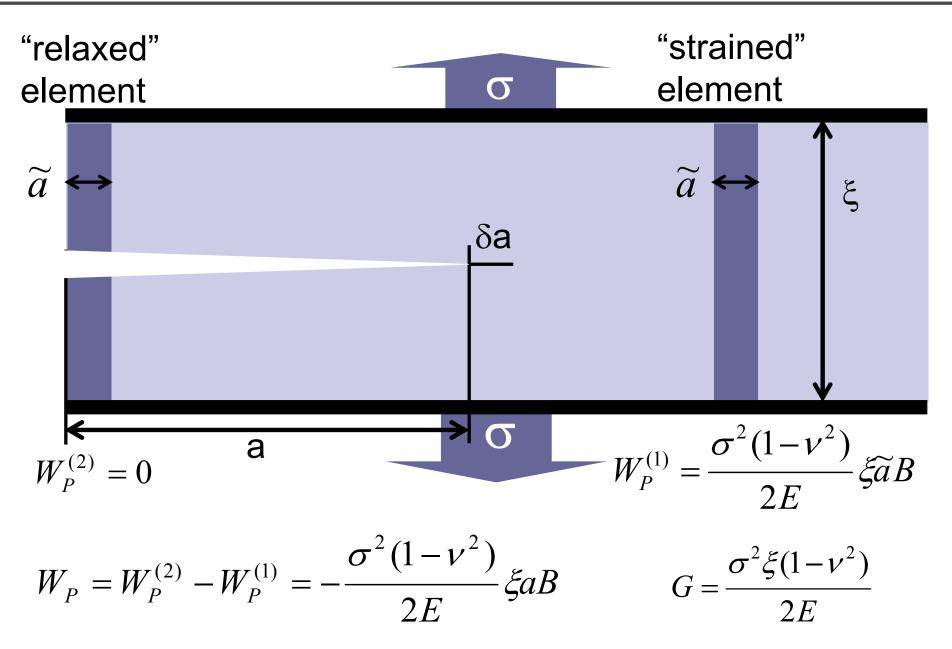


Change in potential energy: Create a "relaxed" element from a "strained" element, per unit crack advance

$$W_P = W_P(\sigma, a, ...)$$

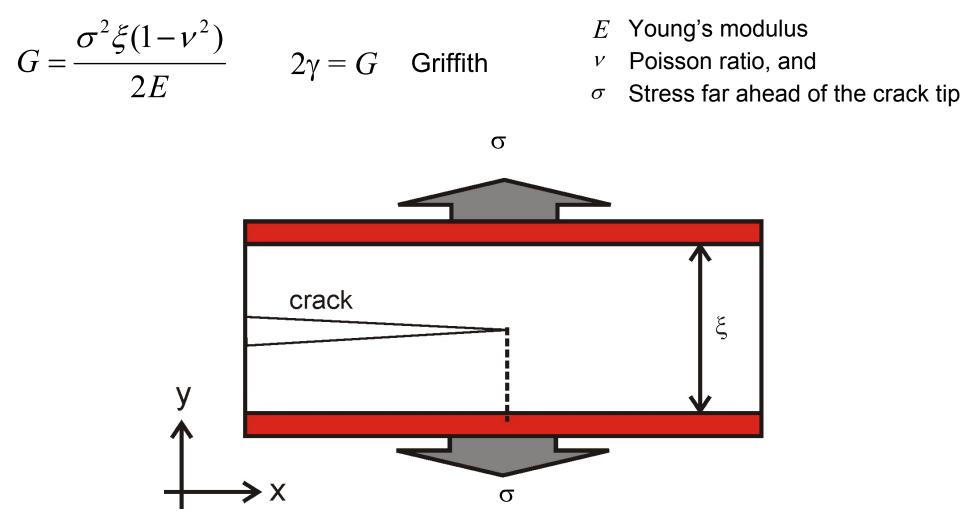


Thin strip geometry



© 2007 Markus J. Buehler, CEE/MIT

Fracture of thin strip geometry Theoretical considerations



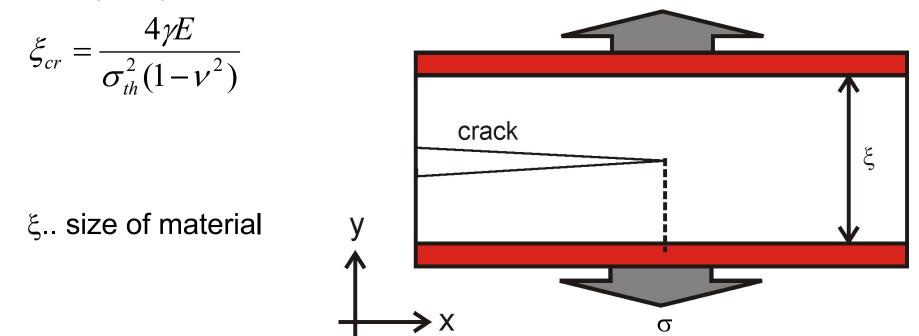
 ξ .. size of material

Fracture of thin strip geometry Theoretical considerations

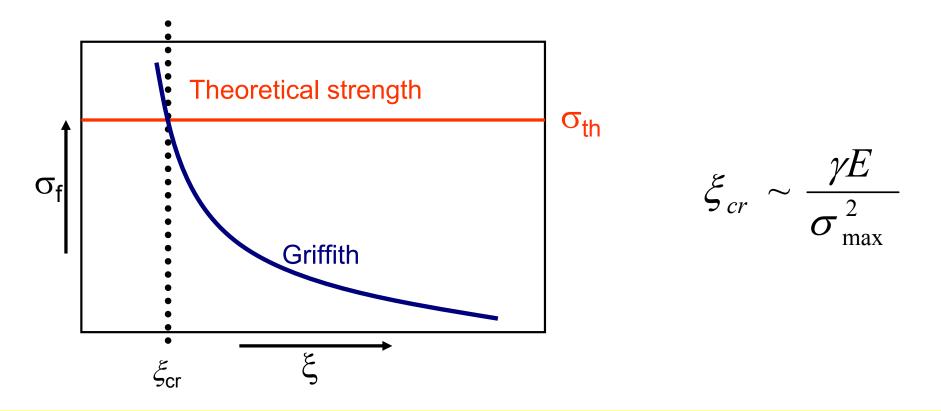
Stress for spontaneous crack propagation $\sqrt{4 \cdot F}$

$$\sigma_f = \sqrt{\frac{4\gamma E}{\xi(1-\nu^2)}} \quad \sigma \to \infty \text{ for } \xi \to 0 \quad \text{Impossible: } \sigma_{\text{max}} = \sigma_{\text{th}}$$

Length scale $\xi_{\rm cr}$ at $\sigma_{\rm th}$ cross-over



σ

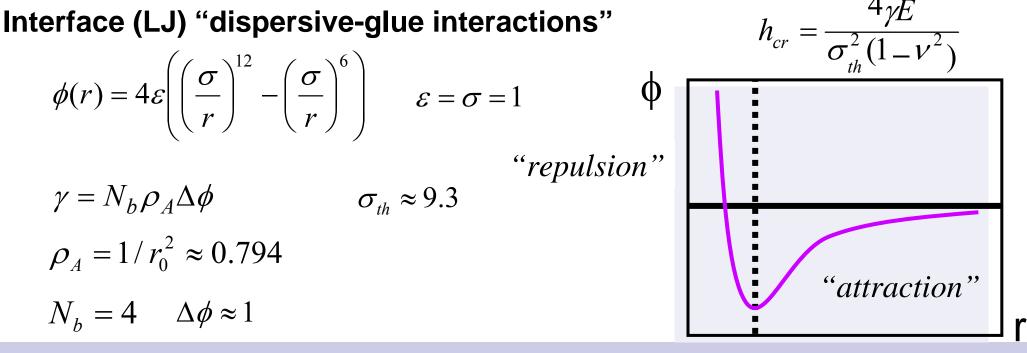


Transition from Griffith-governed failure to maximum strength of material

- Griffith theory breaks down below a critical length scale
- Replace Griffith concept of energy release by failure at homogeneous stress

Bulk (harmonic, FCC)

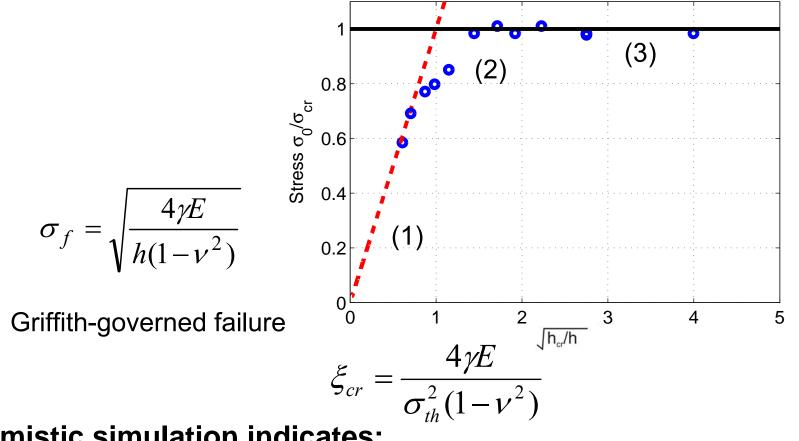
$$\phi(r) = a_0 + \frac{1}{2}k_0(r - r_0)^2 \qquad \begin{array}{l} r_0 = 2^{1/6} \\ a \approx 1.587 \end{array} \qquad k_0 = 572.0$$
$$\mu = \frac{r_0^2}{2}k_0 \qquad E = 8/3\mu \qquad v = 1/3$$



Choose E and y such that length scale is in a regime easily accessible to MD

Atomistic simulation results

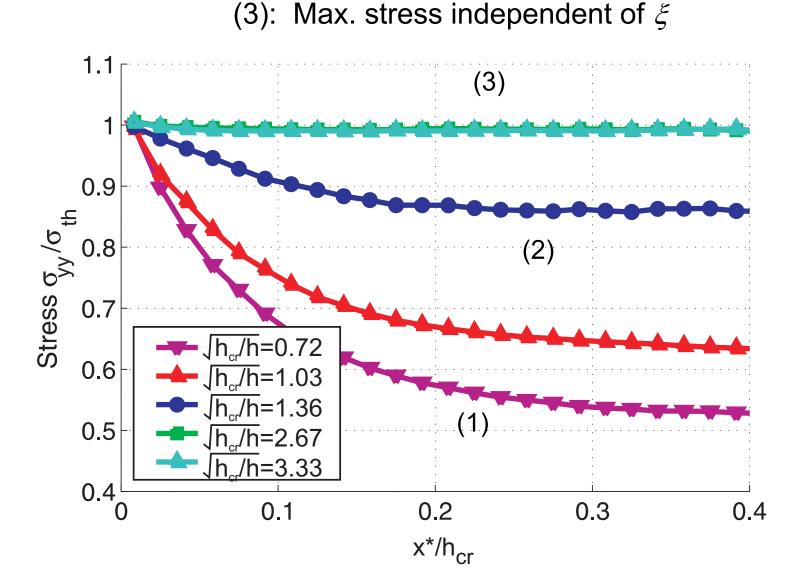




Atomistic simulation indicates:

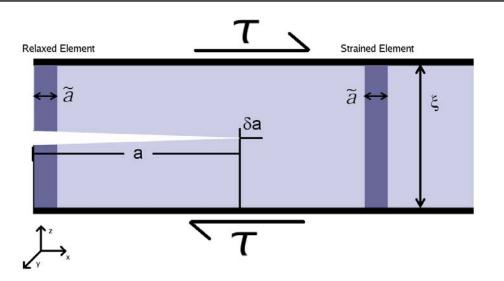
> At critical **nanometer-length scale**, structures become insensitive to flaws: Transition from Griffith governed failure to failure at theoretical strength, independent of presence of crack!!

(Buehler et al., MRS Proceedings, 2004; Gao, Ji, Buehler, MCB, 2004)



(1): Griffith (2): Transition (3): Flaw tolerance

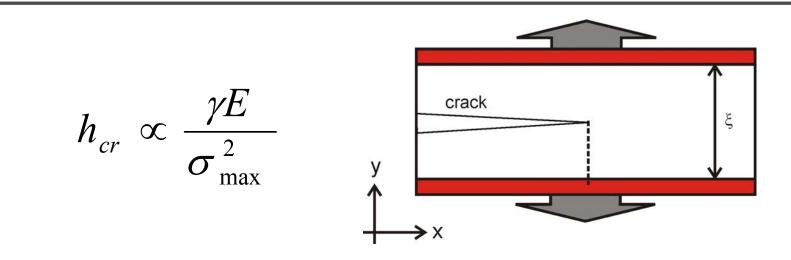
Shear loading



$$\xi_{cr} = \frac{4\gamma_{s}\mu v}{(1+v)(1-2v)\tau_{th}^{2}}$$

Image removed due to copyright restrictions.

Summary: Small-scale structures for strength optimization & flaw tolerance



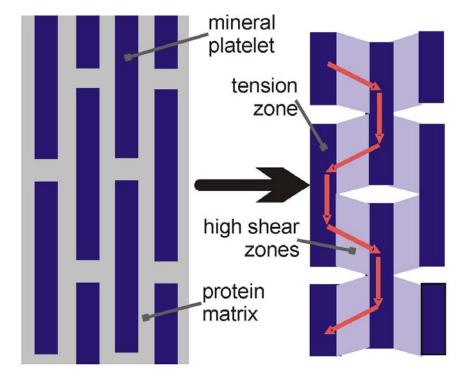
h > h _{cr}	h < h _{cr}
Material is sensitive to flaws.	Material becomes insensitive to flaws.
Material fails by stress concentration at flaws.	There is no stress concentration at flaws. Material fails at theoretical strength.
Fracture strength is sensitive to structural size.	Fracture strength is insensitive to structure size.

(Gao et al., 2004; Gao, Ji, Buehler, MCB, 2004)

Can this concept explain the design of biocomposites in bone?

Characteristic size: 10..100 nm

Image removed due to copyright restrictions.



Estimate for biominerals:

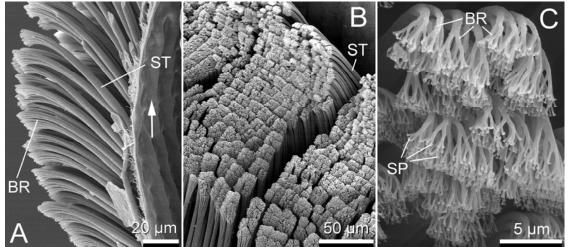
$$\sigma_{\text{max}} \approx \frac{E}{30}, \nu \approx 0.25, E = 100 \text{ GPa}, \gamma = 1 \text{J/m}^2$$

 $\Psi^* \approx 0.022 \quad h_{cr} \approx 30 \text{ nm}$

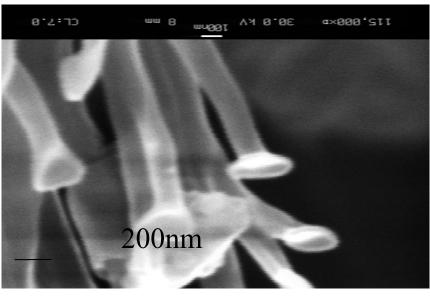
(Gao et al., 2003, 2004)

Adhesion of Geckos

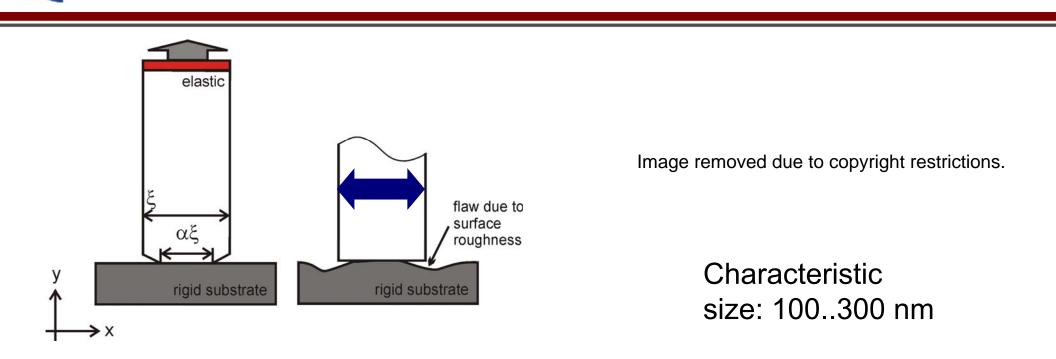
Autumn et al., PNAS, 2002



Courtesy of National Academy of Sciences, U.S.A. Used with permission.



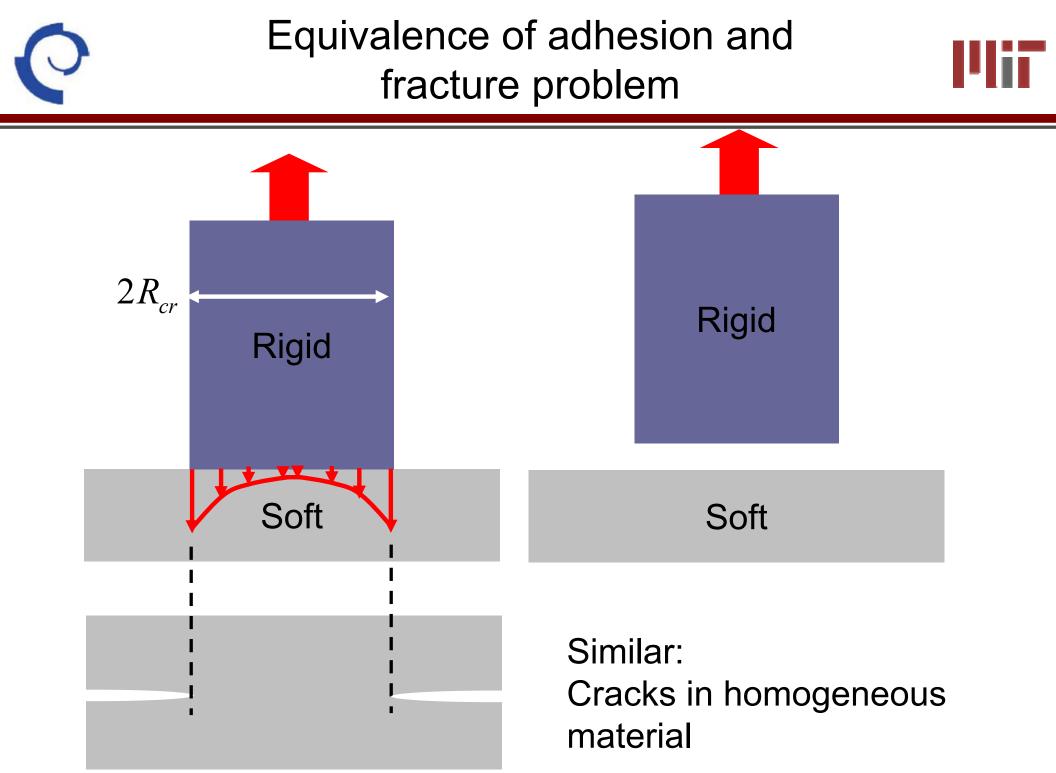
Images removed due to copyright restrictions.



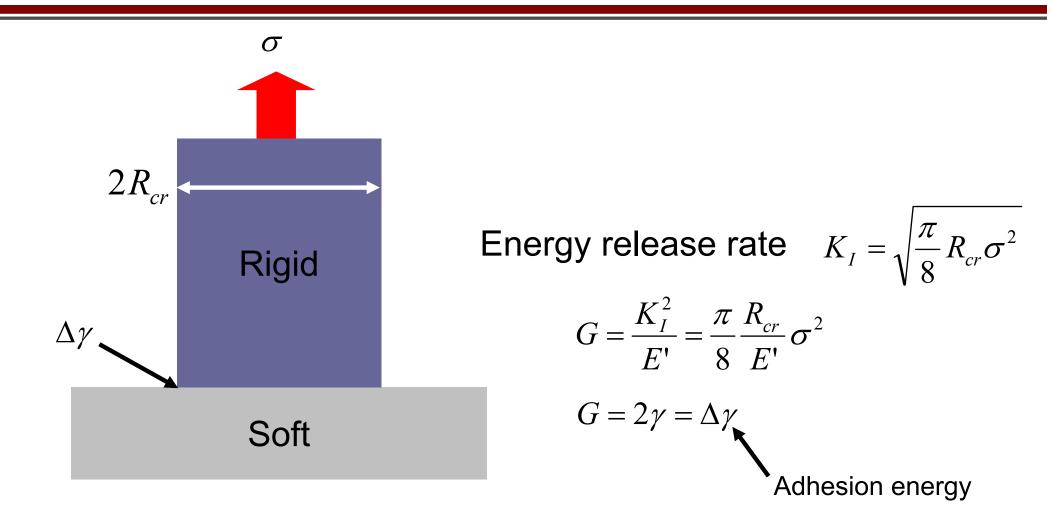
Strategies to increase adhesion strength

-Since $F \sim gR$ (JKR model), increase line length	-At <u>very small length scales</u> , nanometer
of surface by contact splitting	design results in optimal adhesion strength,
(Arzt <i>et al.</i> , 2003)	independent of flaws and shape
	(Gao <i>et al.</i> , 2004)

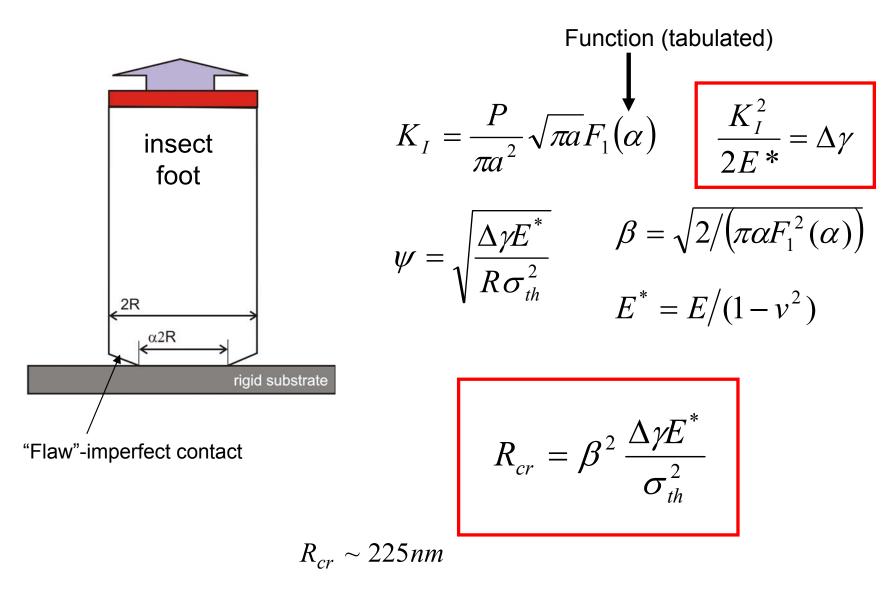
- Schematic of the model used for studies of adhesion: The model represents a cylindrical Gecko spatula with radius attached to a rigid substrate.
- A circumferential crack represents flaws for example resulting from surface roughness. The parameter denotes the dimension of the crack. © 2007 Markus J. Buehler, CEE/MIT



Equivalence of adhesion and fracture problem

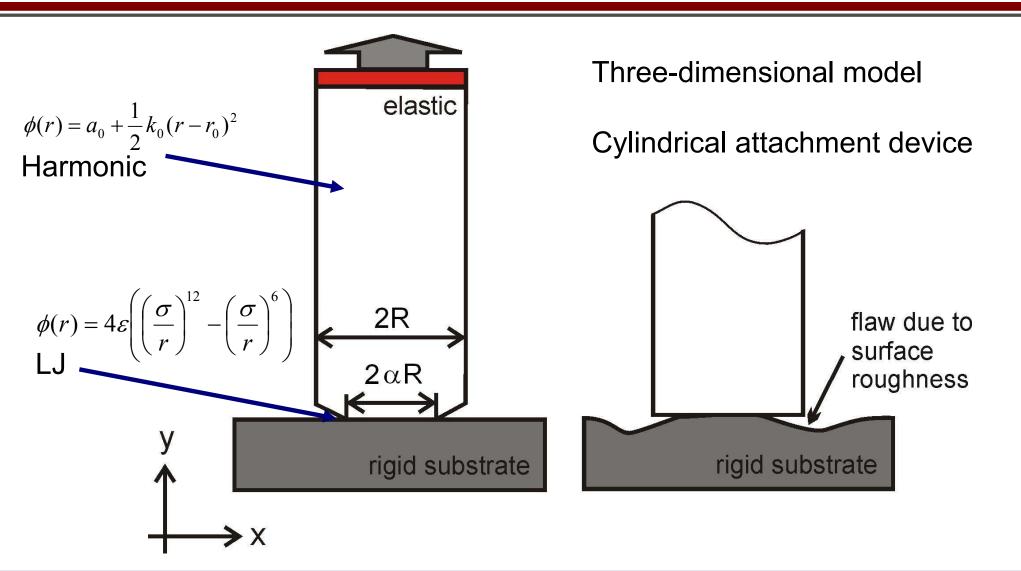


Theoretical considerations Adhesion problem as fracture problem



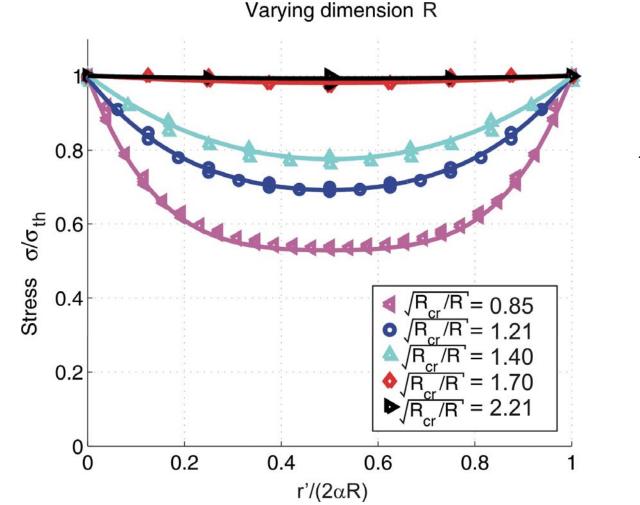
Typical parameters for Gecko spatula

Continuum and atomistic model



LJ: Autumn *et al.* have shown dispersive interactions govern adhesion of attachment in Gecko

Stress close to detachment as a function of adhesion punch size

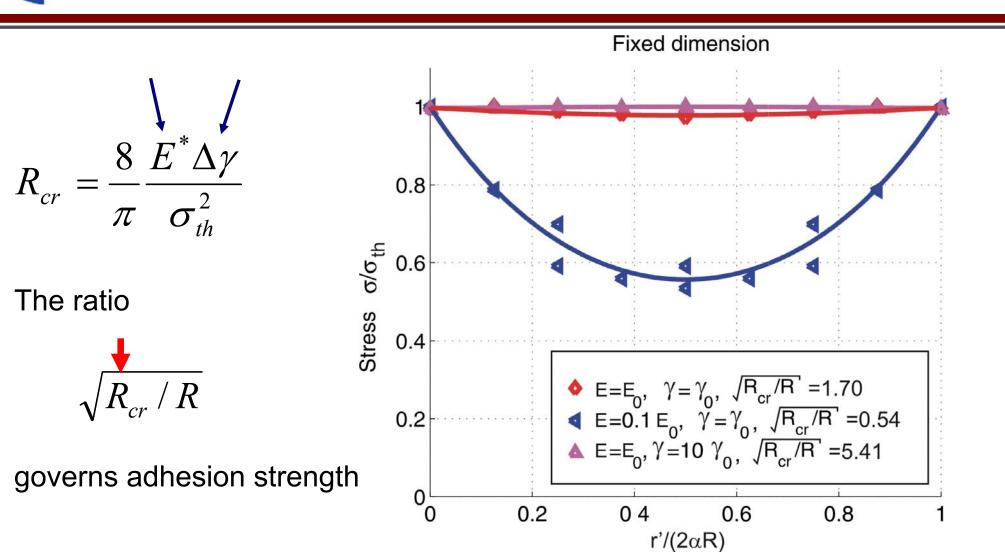


 $\sqrt{R_{cr} / R}$

Has major impact on adhesion strength: At small scale no stress magnification

Smaller size leads to homogeneous stress distribution

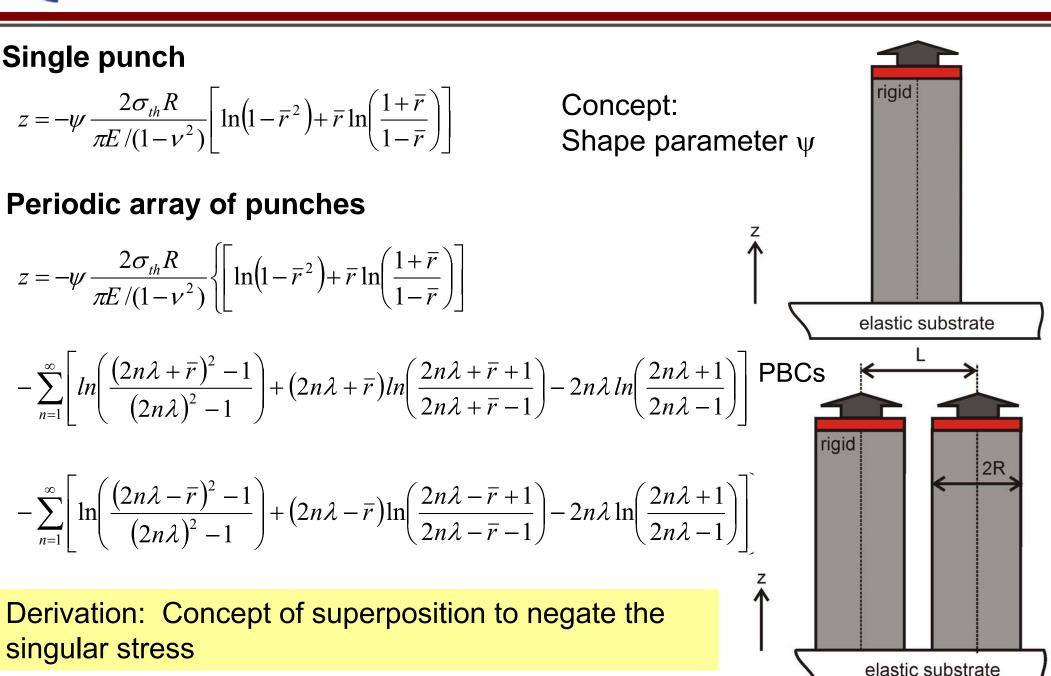
Vary *E* and γ in scaling law

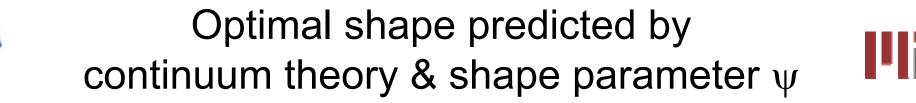


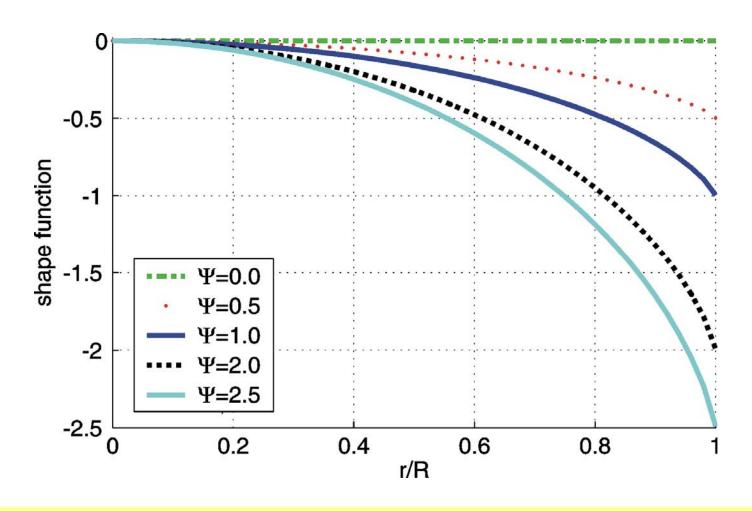
- Results agree with predictions by scaling law
- Variations in Young's modulus or γ may also lead to optimal adhesion

Adhesion strength as a function of size



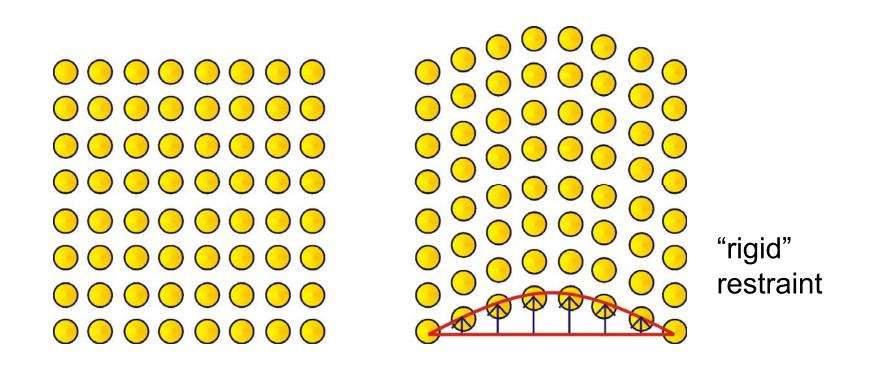




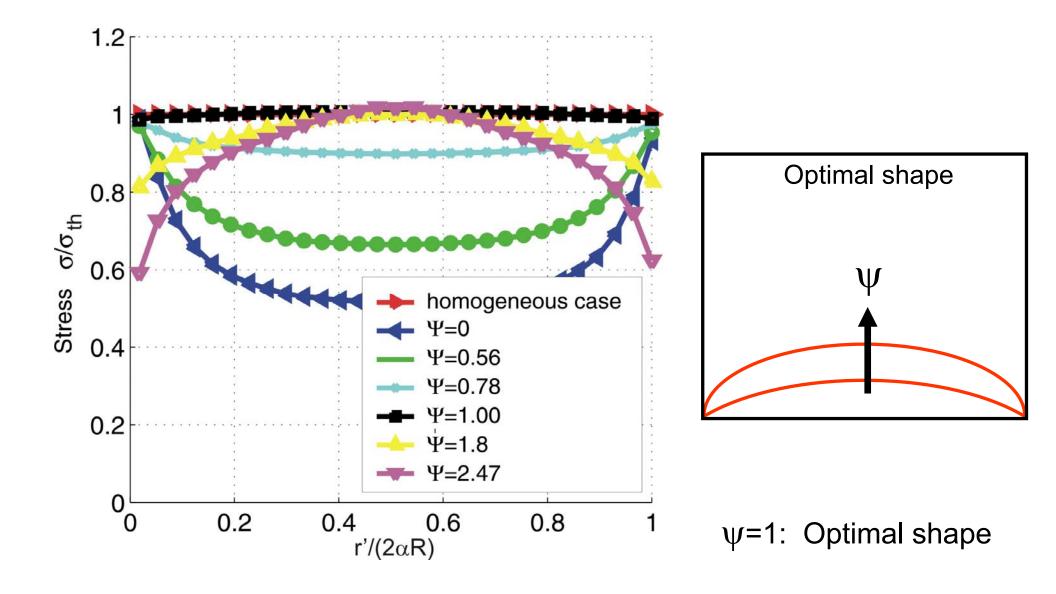


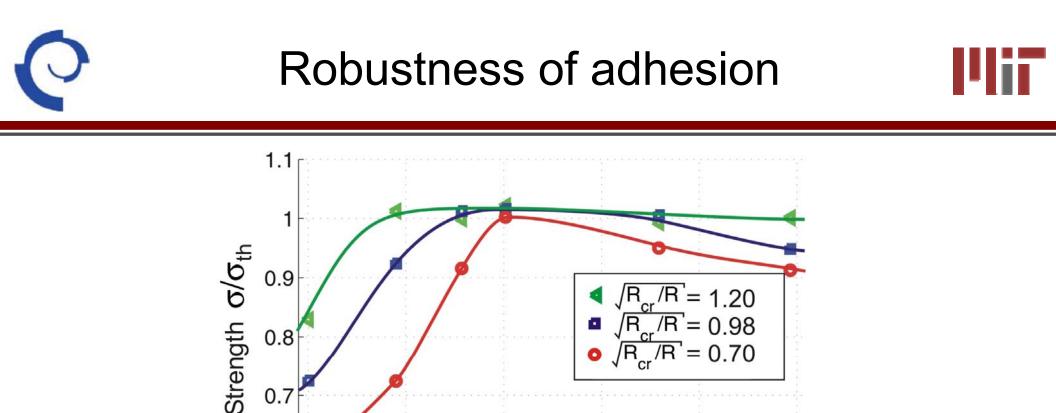
The shape function defining the surface shape change as a function of the shape parameter ψ . For $\psi=1$, the optimal shape is reached and stress concentrations are predicted to disappear.

Creating optimal surface shape in atomistic simulation



Strategy: Displace atoms held rigid to achieve smooth surface shape





• By finding an optimal surface shape, the singular stress field vanishes.

0.5

0.6

0.5

0

However, we find that this strategy does not lead to robust adhesion systems.

1.5

Shape parameter Ψ

2

2.5

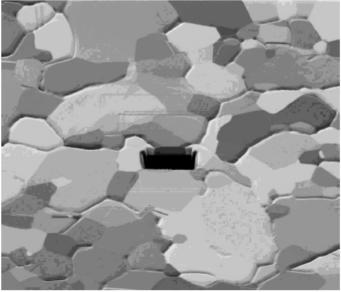
• For robustness, shape reduction is a more optimal way since it leads to (i) vanishing stress concentrations, and (ii) tolerance with respect to surface shape changes.

- We used a systematic atomistic-continuum approach to investigate brittle fracture and adhesion at ultra small scales
- We find that Griffith's theory breaks down below a critical length scale
- Nanoscale dimensions allow developing extremely strong materials and strong attachment systems: Nano is robust

Small nano-substructures lead to robust, flaw-tolerant materials. In some cases, Nature may use this principle to build strong structural materials.

- Unlike purely continuum mechanics methods, MD simulations can intrinsically handle stress concentrations (singularities) well and provide accurate descriptions of bond breaking
- Atomistic based modeling will play a significant role in the future in the area of modeling nano-mechanical phenomena and linking to continuum mechanical theories as exemplified here.

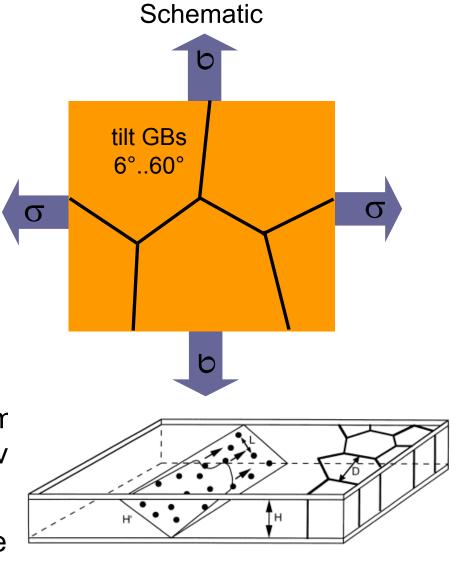
Example: Ultra thin copper films



Courtesy Dirk Weiss, MIT

Polycrystalline thin metal film of copper grains (111) aligned

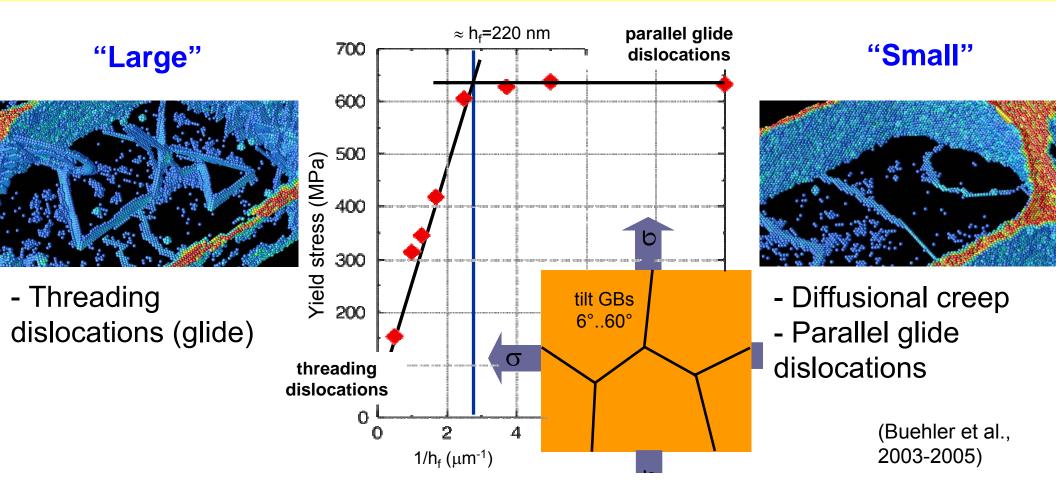
- Biaxial loading by thermal mismatch of film substrate material: High stresses cause sev problems during operation of the device
- Ultra thin, submicron copper films become critically important in next generation integrated circuits (see, e.g. *Scientific American*, April 2004), MEMS/NEMS



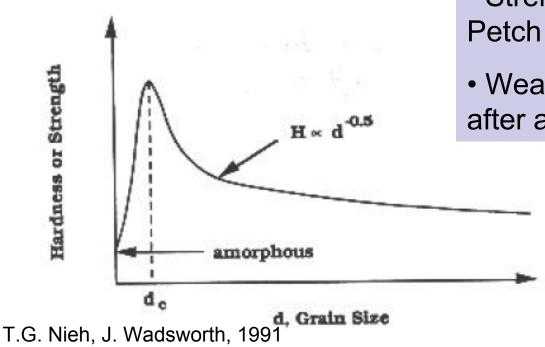
Thin copper films: Smaller is stronger

- Many materials show significant size effects re. their mechanical behavior
- For example, in thin films, dislocation behavior changes from threading dislocations (σ_Y~1/h) to parallel glide dislocations (σ_Y~const.) if the film thickness is reduced, along with a plateau in yield stress

Example: Deformation of ultra thin copper films dislocations/diffusion

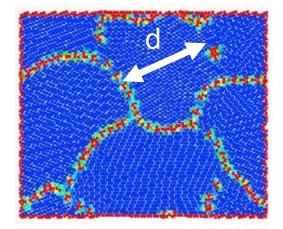


- Similar considerations as for brittle materials and adhesion systems apply also to ductile materials
- In particular, the deformation mechanics of nanocrystalline materials has received significant attention over the past decade



• Strengthening at small grain size (Hall-Petch effect)

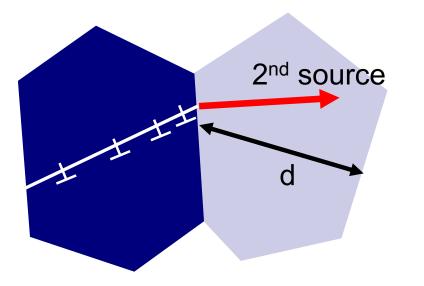
• Weakening at even smaller grain sizes after a peak



http://me.jhu.edu/~ dwarner/index_file s/image003.jpg

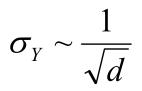
http://www.sc.doe.gov/bes/IWGN.Worldwide.Study/ch6.pdf

- It has been observed that the strength of polycrystalline materials increases if the grain size decreases
- The Hall-Petch model explains this by considering a dislocation locking mechanism:



Nucleate second source in other grain (right)

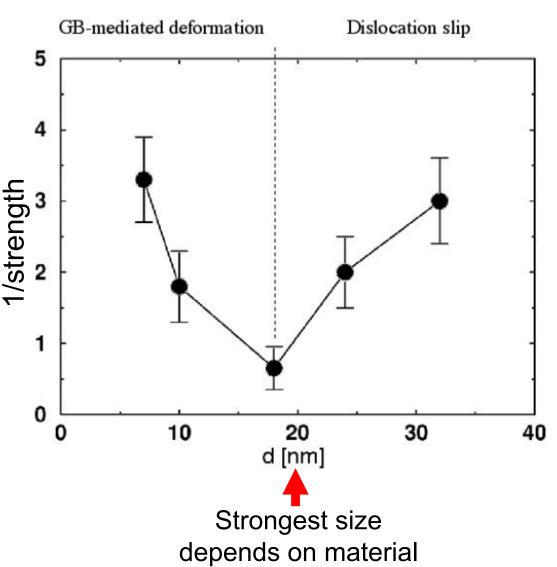
Physical picture: Higher external stress necessary to lead to large dislocation density in pileup



Yamakov et al., 2003, Schiotz et al., 2003 http://www.imprs-am.mpg.de/summerschool2003/wolf.pdf

Different mechanisms have been proposed at nanoscale, including

- GB diffusion (even at low temperatures) Wolf *et al*.
- GB sliding Schiotz et al.
- GBs as sources for dislocations – van Swygenhoven, stable SF energy / unstable SF energy (shielding)



Fundamental length scales in nanocrystalline ductile materials

