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Outline

1. Introduction to Mechanics of Materials
Basic concepts of mechanics, stress and strain, deformation, strength and 
fracture
Monday Jan 8, 09-10:30am

2. Introduction to Classical Molecular Dynamics
Introduction into the molecular dynamics simulation; numerical techniques
Tuesday Jan 9, 09-10:30am

3. Mechanics of Ductile Materials
Dislocations; crystal structures; deformation of metals 
Tuesday Jan 16, 09-10:30am

4. The Cauchy-Born rule
Calculation of elastic properties of atomic lattices
Friday Jan 19, 09-10:30am

5. Dynamic Fracture of Brittle Materials
Nonlinear elasticity in dynamic fracture, geometric confinement, interfaces
Wednesday Jan 17, 09-10:30am

6. Mechanics of biological materials
Monday Jan. 22, 09-10:30am

7. Introduction to The Problem Set
Atomistic modeling of fracture of a nanocrystal of copper. 
Wednesday Jan 22, 09-10:30am

8. Size Effects in Deformation of Materials
Size effects in deformation of materials: Is smaller stronger?
Friday Jan 26, 09-10:30am
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Outline and content (Lecture 5)

Topic: Elasticity in biological materials:  Entropic versus energetic 
contributions

Examples: Deformation of collagen, vimentin, …: Protein mechanics

Material covered: Covalent bonding and models, chemical 
complexity, reactivity, molecular potentials: CHARMM 

Important lesson: Models for bonding in proteins, entropic vs. 
energetic elasticity

Historical perspective: AFM, single molecule mechanics 
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Very brief review:

Material covered in last 2-3 lectures
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Dislocation nucleation from a crack tip

Ductile
vs. brittle
Depends on atomic 
behavior at crack tip

Figure by MIT OCW.

Copper



Ductile materials are governed by the 

motion of dislocations: Introduction
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� 

� 

Figure by MIT OCW. 

Dislocations are the discrete entities that carry plastic (permanent) 

deformation; measured by “Burgers vector”


http://www.people.virginia.edu/~lz2n/mse209/Chapter7.pdf © 2006 Markus J. Buehler, CEE/MIT 
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Brittle or ductile?

Critical conditions for 
dislocation nucleation / 
beginning of fracture

Rice-Thomson model

Rice-Peirls model
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Strengthening mechanisms 

????

Figure by MIT OCW.
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Final sessile structure

Image removed due to copyright restrictions.
See:
1.  Buehler, M. J., et al.  "The dynamical complexity of 
work-hardening:  a large scale molecular dynamics 
situation."  Acta Mechanica Sinica 21, no. 2 (2005):  
103-111.

2.  Buehler, M. J., et al.  "Atomic plasticity:  description 
and analysis of a one-billion atom simulation of ductile 
materials failure."  Computer Methods in Applied 
Mechanics and Engineering 193, no. 48-51 (2004):  
5257-5282.
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Energy approach to elasticity
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Energy approach to elasticity

1st law of TD

2nd law
Applied force

Change in entropy is always greater or equal than the entropy 
supplied in form of heat; difference is due to internal 
dissipation

Dissipation rate

External work rate

Dissipation rate after consider 1st law of TD:

or

Dissipation rate=External work rate
-change in usable energy U-TS`
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Energy approach to elasticity

Elastic deformation (no dissipation by definition):

Assume only internal energy change

Expand equation   
dU/dt = dU/dx dx/dt

Therefore: If applied force equals change in free energy of the system, have elastic
deformation`

With strain energy density:
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Idea: Use thermodynamic approach to develop expression of elasticity 
of a atomic microstructure, provided a specific interatomic potential

Assuming locally homogeneous deformation, take a unit cell 
representation (typically PBCs) and express free energy density as a 
function of strain tensor

This provides direct link between interatomic potential and constitutive 
behavior

For example: FCC crystal and EAM potential – can calculate elastic 
properties directly

Cauchy-Born rule
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Cauchy-Born rule

Idea:  Express elastic energy (strain energy density) for a atomistic 
representative volume element as a function of macroscopic applied strain

DΩ:  Mapping function, e.g. 

Impose macroscopic deformation gradient on atomistic volume element, 
then calculate atomic stress – this corresponds to the macroscopic stress
Strictly valid only far away from defects in periodic lattice (homogeneous 
deformation, perfect lattice, amorphous solid-average)

Allows direct link of potential to macroscopic continuum elasticity

U(l) a function of deformation 
gradient
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1D example:  Cauchy-Born rule

Impose homogeneous strain field on 1D string of atoms
Then get                             from thatklijklij c εσ =

))1((1)(1)( 0
00

r
Dr

r
Dr

⋅+
⋅

=
⋅

=Φ εφφε

r0

Dr ⋅0 Atomic volume

Strain energy density
function

F1 F2

1 32

r23r21
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Detailed write-up on 1D / 2D Cauchy-Born 
rule is included on line
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Dislocation 
mechanics

Review

Continuum
mechanics
div σ = -ρg

Fracture
mechanics

(stress field)

Beam 
bending

Beam 
bending

Atomistic
modeling

F=ma

Equations of
motion

Numerical
issues

(parallelization,
integration..)

Interatomic
potential
LJ, EAM

Energy 
approach

Virial
stress

Cauchy-
Born-rule
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Mechanics of biological materials

Images removed due to copyright restrictions.

(a) Brittle

(b) Ductile
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Example: Stretching of proteins

Physical origin?
Soft matter
Nonlinear
Viscoelastic (time dependent)
…

Images removed due to copyright restrictions.

0
0

20

Fo
rc

e 
(p

N
)

400

40

60

-0.4

-4
-2

2
0

0 2

B
ea

d 
(µ

m
)

St
ag

e 
(µ

m
)

0.4

0

800

Extension (nm)

1,200 1,600 2,000

4
Time (s)

6 8

Figure by MIT OCW.



© 2007 Markus J. Buehler, CEE/MIT

Additional Reading

Book Chapters

T. Courtney, Mechanical Behavior of Materials 
Chapter 2

D.I. Bower 
An Introduction to Polymer Physics (Chapter 6 [+7 and 3])

D. Boal
Mechanics of the Cell (Chapters 1+2)

D. Whitford
Proteins – Structures and Function (Chapters 1-4)
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Physical fundamentals of elasticity

Interactions between atoms, molecules and/or particles 
govern the elastic response of materials

For a fundamental understanding of elasticity, need to 
consider atomic bonding (chemistry or quantum 
mechanics)

Elastic response is governed by change of free energy as 
a function of deformation (yields stress versus strain);  
second derivative of free energy with respect to strain 
yields Young’s modulus

F(T,V) = U − TS
- Polymers 
- Biological structures and 
materials (proteins, DNA, …)
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Extension ratios:  Large-strain deformation

i

i
ii x

u
∂
∂

=ε

ii Δ+=1λ iiii Δ== εε
In small-strain elasticity

22 21 iii Δ+Δ+=λ

ii Δ+= 212λ

0→Δ i Leads to

l0
0/ ll=λl

Extension ratio

0

(small strains)

Extension ratios in three directions; pure tensile stress 
state (directions of principal stress)iλ
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Strain energy functions

Phenomenological theory that uses the concept of strain-
energy functions

Shear strains are assumed to be zero (coordinate system 
of principal stresses)

U is (physically) not equivalent to the thermodynamic 
internal energy function; 
instead it is a function that maps changes in entropy and 
internal energy into a mathematical function 
(phenomenological model) – free energy density!

Examples:  Rivlin, Neo-Hook, …

)( ifU λ=
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Example:  Neo-Hookean Solid

( )32
3

2
2

2
1 −++= λλλCU

Express “strain energy density” as a function of extension ratios  iλ

C is a constant (parameter) that is related to the 
Young’s modulus (will be derived later)

The SED function is used to calculate the stress for a given 
deformation state 
(note:  2nd derivatives=modulus=not constant!!)
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Uniaxial deformation

Incompressible (retain volume during deformation)

1321 =λλλ

( )32
3

2
2

2
1 −++= λλλCU

021 == σσ

21 λλ = λλ =3

σσ =3

Orthogonal to pulling 
direction:

λλλ /123 ==

3λ ( )3/22 −+= λλCU for uniaxial tension

σλλλ =−= )/1(2/ 2CddU
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Reduction to small-strain elasticity

Then, the relation between extension ratio and stress 
can be written as

)/1(2 2 λλσ −= C

Consider the nominal stress force/unit area of the undeformed 
medium:

)/1(2 2λλσ −= C For small strains:  ii ελ +=1

)]0()1(21[2))1/(1)1((2 2 OCC +−−+≈+−+= εεεεσ

εεσ EC == 6 Hooke’s law (linear elasticity)

3

6/EC =
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Entropic change as a function of stretch

High entropy 

Low entropy 
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Entropic change as a function of stretch

x-end-to-end distance

Entropic Regime

Energetic Regime

Figure by MIT OCW.
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Statistical theory of rubber elasticity

Based on the assumption that the rubber entropy S can be 
calculated in terms of 

For example, it can be shown that

0/ ll=λ

)/1( 2λλσ −= Cn

This is the result for a neo-Hookean solid

(see Courtney, p. 64)

( )32
3

2
2

2
1 −++= λλλCU 6/EC =
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Statistical theory of rubber elasticity

Needed to understand elasticity:  Expression of free energy
as a function of the applied strain!
Here: Entropic elasticity – therefore change in entropy

Note: No change in elastic energy of molecules

a

b

r1

r2

λ1r1

λ2b

λ1a

λ2r2

Figure by MIT OCW.
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Single freely jointed chain

22rkbcS −=

2
2

2
3
nl

b =

22 lnrb ⋅>=< RMS length of the chain (no force applied) 

Total length:  nl=L

nlln →⋅ Maximum extension due to force

Physical meaning of l:  Length at which molecular bending is 
uncorrelated

r2 =

o x

l

y

r

θi

Figure by MIT OCW.
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22rkbcS −=

Freely jointed Gaussian chain with n links and length l each 
(same for all chains in rubber)

2
2

2
3
nl

b =where r
end-to-end 
distance of 
chain

( ) ( ) ( )∑ −+−+−−=Δ
bN

zyxkbS 22
3

22
2

22
1

2 111 λλλ

Entropic elasticity:  Derivation

a

b

1

r2

λ1r1

λ2b

λ1a

λ2r2

r

Figure by MIT OCW.
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( ) ( ) ( )[ ]><−+><−+><−−=Δ 22
3

22
2

22
1

2 111 zyxNkbS b λλλ

>< .. Average values over all Nb chains 
– need multiply by Nb to get total energy

Isotropic solid:  End-to-end distances of the Nb chains are 
directed equally in all directions;  therefore

><>=>=<>=<< 2
3
1222

brzyx

Entropic elasticity:  Derivation

( ) ( ) ( )∑ −+−+−−=Δ
bN

zyxkbS 22
3

22
2

22
1

2 111 λλλ

Figure by MIT OCW.
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><=<⋅= 2
bRMS rlnr

The length            in the unstressed state is equal to the mean 
square length of totally free chains.

It can be shown that

>< 2
br

22 lnrb ⋅>=<

2
2

3
1222

2
1
b

lnzyx =⋅>=>=<>=<<

( ) ( ) ( )[ ]1112/ 2
3

2
2

2
1 −+−+−−=Δ λλλbkNS No explicit dep. 

on b any more

( )32
3

2
2

2
12

1 −++=Δ−= λλλkTNSTU b

Entropic elasticity:  Derivation

( )32
3

2
2

2
1 −++= λλλCU )/1)(3/( 2 λλσ −= E

6/EC =
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For SED:  Free energy density
Young’s modulus

Predictions:

Stiffness is proportional to temperature

Stiffness is proportional to degree of cross-linking (for ideal 
network, N* equals twice the cross-link density)

kTNE *3=

TE ~

*~ NE

Entropic elasticity

( )32
3

2
2

2
12

1 −++=Δ−= λλλkTNSTU b

6/EC =

VNN b /* =
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Summary

Developed rigorous link extension ratio and elastic 
properties of rubber-like materials

Based on statistical theory and by considering changes in 
entropy due to deformation, arrived at an expression for 
the Neo-Hookeian solid

This enables to link cross-linking density and temperature 
with Young’s modulus
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Persistence length

ξp

s

t(s)  tangent slope

The length at which a filament is capable of bending significantly in 
independent directions, at a given temperature. 
This is defined by a autocorrelation function which gives the characteristic 
distance along the contour over which the tangent vectors t(s) become 
uncorrelated 

ξp = l/2o x

l

y

r

θi

Figure by MIT OCW.
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Persistence length: Illustration

Bending deformation  (R=radius, ΕΙ=flexural rigidity of the rod) 
- energy

Thermal (kinetic) energy per molecule (kinetic theory of gases) 
- energy

Example:  kT~4E-21 J at room temperature

Persistence length is defined as

(unit:  length)

22R
LEIEbend =

kTE molkin 2
3

, =

Tk
EI

p =ξ

R

L
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Contour length of molecules

The contour length of a molecule is the total length in the 
stretched configuration, denoted as L
When

a filament appears relatively straight.
When 

a filament adopts more convoluted shapes

To pull a highly convoluted molecule apart (               ), a 
force is necessary; define effective spring constant

pL ξ<<

pL ξ>>

p
sp L

kTk
ξ2

3
= xkF sp~

x

L

pL ξ>>

No energetic 
interactions!

Lx <<
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Worm-like chain model

Freely-jointed rigid 
rods

Continuously
flexible ropes

Worm like chain model

Image removed due to copyright restrictions.



© 2007 Markus J. Buehler, CEE/MIT

Worm-like chain model

This spring constant is only valid for small deformations 
from a highly convoluted molecule, with length far from its 
contour length 

A more accurate model (without derivation) is the Worm-like 
chain model (WLC) that can be derived from the Kratky-
Porod energy expression (see D. Boal, Ch. 2)

A numerical, approximate solution of the WLC model: 

Lx <<

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−

−
= Lx

Lx
kTF

p

/
4
1

/1
1

4
1

2ξ

Marko and Siggia, 1995 
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Proteins

An important building block in biological systems are 
proteins

Proteins are made up of amino acids

20 amino acids carrying different side groups (R)

Amino acids linked by the amide bond via condensation

Proteins have four levels of structural organization: 
primary, secondary, tertiary and quaternary
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Protein structure

Primary structure: Sequence of amino 
acids

Secondary structure: Protein secondary 
structure refers to certain common 
repeating structures found in proteins. 
There are two types of secondary 
structures: alpha-helix and beta-pleated
sheet. 

Tertiary structure: Tertiary structure is the 
full 3-dimensional folded structure of the 
polypeptide chain. 

Quartenary Structure:  Quartenary
structure is only present if there is more 
than one polypeptide chain. With multiple 
polypeptide chains, quartenary structure is 
their interconnections and organization. 

A A S X D X S L V E 
V H X X 

Images removed due to copyright restrictions.
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20 natural amino acids

Images removed due to copyright restrictions.
Table of amino acid chemical structures.
See similar image:  
http://web.mit.edu/esgbio/www/lm/proteins/aa/aminoacids.gif.



© 2007 Markus J. Buehler, CEE/MIT

Hierarchical structure of collagen

Collagen features 
hierarchical structure

Goal: Understand the 
scale-specific 
properties and cross-
scale interactions

Macroscopic 
properties of collagen 
depend on the finer 
scales

Material properties 
are scale-dependent

(Buehler, JMR, 2006)

Images removed due to copyright restrictions.
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Elasticity of tropocollagen molecules

0
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The force-extension curve for stretching a single type II collagen molecule.
The data were fitted to Marko-Siggia entropic elasticity model. The molecul
length and persistence length of this sample is 300 and 7.6 nm, respectively.

2

Fo
rc

e 
(p

N
)

4

6

8

10

12

14

100 150

Extension (nm)

200 250 300 350

Experimental data
Theoretical model

e

Figure by MIT OCW.  After Sun, 2004.



© 2007 Markus J. Buehler, CEE/MIT

Modeling organic chemistry

Covalent bonds (directional)
Electrostatic interactions
H-bonds
vdW interactions

Images removed due to copyright restrictions.
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http://www.ch.embnet.org/MD_tutorial/pages/MD.Part2.html
http://www.pharmacy.umaryland.edu/faculty/amackere/force_fields.htm

Model for covalent bonds

Bonding between atoms 
described as combination of 
various terms, describing the 
angular, stretching etc. 
contributions

Courtesy of the EMBnet Education & Training Committee.  Used with permission.
Images created for the CHARMM tutorial by Dr. Dmitry Kuznetsov (Swiss
Institute of Bioinformatics) for the EMBnet Education & Training committee 
(http://www.embnet.org)
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Model for covalent bonds
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Bond Energy versus Bond length
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Single Bond

Double Bond

Triple Bond

 Chemical type Kbond bo 

 C−C 100 kcal/mole/Å2 1.5 Å 

 C=C 200 kcal/mole/Å2 1.3 Å 

 C≡C 400 kcal/mole/Å2 1.2 Å 

Vbond = Kb b − bo( )2

Review:  CHARMM potential

http://www.ch.embnet.org/MD_tutorial/pages/MD.Part2.html
http://www.pharmacy.umaryland.edu/faculty/amackere/force_fields.htm

Different types of C-C 
bonding represented by 
different choices of b0
and kb;  

Need to retype when 
chemical environment 
changes
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http://www.ch.embnet.org/MD_tutorial/pages/MD.Part2.html

Review:  CHARMM potential

Nonbonding interactions

vdW (dispersive)

Coulomb (electrostatic)

H-bonding

Image removed for copyright restrictions.

See the graph on this page:
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UFF “Universal Force Field”

• Can handle complete periodic table

• Force constants derived using general rules of element, hybridization 
and connectivity 

Features:

• Atom types=elements

• Chemistry based rules
for determination of 
force constants

Pauling-type bond order correction

Rappé et al.
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Common empirical force fields

Class I (experiment derived, simple form)
CHARMM
CHARMm (Accelrys)
AMBER
OPLS/AMBER/Schrödinger
ECEPP (free energy force field)
GROMOS

Class II (more complex, derived from QM)
CFF95 (Biosym/Accelrys)
MM3
MMFF94 (CHARMM, Macromodel…)
UFF, DREIDING

http://www.ch.embnet.org/MD_tutorial/pages/MD.Part2.html
http://www.pharmacy.umaryland.edu/faculty/amackere/force_fields.htm
http://amber.scripps.edu/

Harmonic terms;
Derived from 
vibrational
spectroscopy, gas-
phase molecular 
structures
Very system-specific 

Include anharmonic terms
Derived from QM, more 
general

Image removed due to copyright restrictions.
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Hydrogen bonding
e.g. between O and H in H2O
Between N and O in proteins…

Alpha helix and beta sheets

Images removed due to copyright restrictions.

Image removed due to copyright restrictions.
See:  
http://www.columbia.edu/cu/biology/courses/c2005/ima
ges/3levelpro.4.p.jpg

Image removed due to copyright restrictions.
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Unfolding of alpha helix structure

Figure by MIT OCW.  After Ackbarow and Buehler, 2007.
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Figure by MIT OCW.  
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Unfolding of beta sheet

Titin I27 domain: Very 
resistant to unfolding 
due to parallel H-
bonded strands 

Keten and Buehler, 2007

Image removed due to copyright restrictions.

0
0

1000

2000

3000

4000

5000

6000

50 100
Displacement (A)

Fo
rc

e 
(p

N
)

150 200 250 300

Force - Displacement Curve

Figure by MIT OCW.



© 2007 Markus J. Buehler, CEE/MIT
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Three-point bending test: 
Tropocollagen molecule

Figure by MIT OCW.

Source: Buehler, M. J., and S. Y. Wong. "Entropic Elasticity Controls Nanomechanics of Single  
Tropocollagen Molecules." Biophys J 93 (2007): 37-43.
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Three-point bending test: 
Tropocollagen molecule

MD: Calculate bending stiffness; consider different deformation rates

Result: Bending stiffness at zero deformation rate (extrapolation)

Yields: Persistence length – between 3 nm and 25 nm (experiment: 7 nm)
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Figure by MIT OCW.

Source: Buehler, M. J., and S. Y. Wong. "Entropic Elasticity Controls Nanomechanics of Single  
Tropocollagen Molecules." Biophys J 93 (2007): 37-43.
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Stretching experiment: Tropocollagen molecule
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Figure by MIT OCW.  Source: Buehler, M. J., and S. Y. Wong. "Entropic Elasticity Controls 
Nanomechanics of Single Tropocollagen Molecules." Biophys J 93 (2007): 37-43.




