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Deformation of Ductile Materials (cont’d) 
Fracture of brittle materials 

Lecture 5 

From nano to macro: Introduction to atomistic 
modeling techniques 

IAP 2007 



Outline


1.	 Introduction to Mechanics of Materials 
Basic concepts of mechanics, stress and strain, deformation, strength and
fracture 
Monday Jan 8, 09-10:30am 

2.	 Introduction to Classical Molecular Dynamics
Introduction into the molecular dynamics simulation; numerical techniques
Tuesday Jan 9, 09-10:30am 

3.	 Mechanics of Ductile Materials 
Dislocations; crystal structures; deformation of metals 
Tuesday Jan 16, 09-10:30am 

4.	 The Cauchy-Born rule
Calculation of elastic properties of atomic lattices
Friday Jan 19, 09-10:30am 

5.	 Dynamic Fracture of Brittle Materials
Nonlinear elasticity in dynamic fracture, geometric confinement, interfaces
Wednesday Jan 17, 09-10:30am 

6.	 Mechanics of biological materials
Monday Jan. 22, 09-10:30am 

7.	 Introduction to The Problem Set 
Atomistic modeling of fracture of a nanocrystal of copper.

Wednesday Jan 22, 09-10:30am


8.	 Size Effects in Deformation of Materials 
Size effects in deformation of materials: Is smaller stronger?
Friday Jan 26, 09-10:30am 
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Outline and content (Lecture 5)


�	 Topic: Fracture mechanisms in ductile materials. 

�	 Examples: Large-scale simulation of a copper nanocrystal – analysis 
of dislocation mechanisms 

�	 Material covered: Metallic bonding, EAM potentials, energy approach 
to elasticity, Cauchy-Borne rule; basics in fracture mechanics – 
prediction of dislocation nucleation and crack extension 

�	 Important lesson: Dislocation as fundamental carrier of plasticity, 
driving force for fracture processes, competition between ductile and 
brittle processes 

�	 Historical perspective: Origin of Griffith’s fracture theory 
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Ductile versus brittle materials


Copper, 
Polymers, 
Glass, 

Gold, 
Ice… … 

Surface

energy!
 shear load 
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� Derivation stress field around crack tip


See lecture notes 
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Asymptotic stress field


EQ eq.


Compat. cond.


Airy stress function: Ansatz




Stress field around a (static) crack


Hoop or opening stress 

Maximum principal stress 

Continuum theory 
MD modeling © 2007 Markus J. Buehler, CEE/MIT 



Ductile materials are governed by the 

motion of dislocations: Introduction


Burgers vector 
b 

Dislocations are the discrete entities that carry plastic (permanent) 

deformation; measured by “Burgers vector”


http://www.people.virginia.edu/~lz2n/mse209/Chapter7.pdf © 2007 Markus J. Buehler, CEE/MIT 

http://www.people.virginia.edu/~lz2n/mse209/Chapter7.pdf


Partial dislocations


� In FCC, dislocations with Burgers vector [110] split up into two 
“partial dislocations” with Burgers vector 1/6[112] 

Metals with low SFE 
and materials under 
geometric 
confinement often 
have large stacking 
faults 

http://www.tf.uni-kiel.de/matwis/amat/def_en/kap_5/backbone/r5_4_2.html © 2007 Markus J. Buehler, CEE/MIT 

http://www.tf.uni-kiel.de/matwis/amat/def_en/kap_5/backbone/r5_4_2.html


Partial dislocations


Stacking fault: Long range atomic order distorted Æ HCP vs. FCC
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Dislocation nucleation from a crack tip


copper


Large shear stress 

• Critical load for cracking 
• What happens when the load becomes large? 
• How to analyze the complex data? 
• Limitations of modeling… 
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Atomistic details of dislocation nucleation


[111] 

[112] 

• Dislocation nucleation from a traction-free grain boundary in an ultra thin 
copper film 

• Atomistic results depict mechanism of nucleation of partial dislocation 
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Chemical bonding in metals

“metallic bonding”


� Bonding between atoms with low electronegativity 1,2 or 3 valence 
electrons, therefore there are many vacancies in valence shell. 

� When electron clouds overlap, electrons can move into electron cloud of
adjoining atoms. 

�	 Each atom becomes surrounded by a number of others in a three-
dimensional lattice, where valence electrons move freely from one valence 
shell to another. 

�	 Delocalized valence electrons moving between nuclei generate a binding 
force to hold the atoms together 

positive ions in a sea of electrons 

Thus: 
� Electron gas model 
� Mostly non-directional bonding, but the bond strength indeed depends on 

the environment of an atom, precisely the electron density imposed by 
other atoms 

+ 
Electron (q=-1) 

Ion core (q=+N) 
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Properties of metals


Property Physical/atomic reason 

High density Tightly packed FCC, BCC, HCP 

High melting temperature Strong forces between ion core and 
delocalized electrons 

Good conductors of heat Vibration transport via delocalized 
electrons (+phonons) 

Good electrical conductors Delocalized electrons 
(flow in and out) 

Many metals are ductile Glide (and climb) of dislocations 

Lustrous Reflection of light by electron gas 
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Why pair potentials fail…


�	 In pair potentials, the strength of each bond is dependent only
on the distance between the two atoms involved: 
The positions of all the other atoms are not relevant
(works well e.g. for Ar where no electrons are available for bonding and atoms are 
attracted with each other only through the weak van der Waals forces) 

�	 However: QM tells that the strength of the bond between two 
atoms is affected by the environment (other atoms in the
proximity) 

�	 As a site becomes more crowded, the bond strength will
generally decrease as a result of Pauli repulsion between
electrons. 
The modeling of many important physical and chemical
properties depends crucially on the ability of the potential to
"adapt to the environment" 

�	 Can not reproduce surface relaxation (change in electron
density) 

http://www.fisica.uniud.it/~ercolessi/forcematching.html	 © 2007 Markus J. Buehler, CEE/MIT 

http://www.fisica.uniud.it/~ercolessi/forcematching.html


Modeling attempts: Pair potential


� First attempts using pair potentials 
φi = ∑ϕ(rij ) 

j=1..Nneigh 

6 5 

j=1 

2 3 

4 

… 

cutri 

Lennard-Jones 12:6 

ϕ(rij ) = 4ε
⎡
⎢
⎛
⎜ σ ⎞

⎟ 
12 

−
⎛
⎜ σ ⎞

⎟ 
6 ⎤
⎥ 

⎢⎜ r ⎟ ⎜ r ⎟ ⎥
⎣⎝ ij ⎠ ⎝ ij ⎠ ⎦ 

Morse


Good for noble gas Ar 
(FCC in 3D) 

( ijrϕ ) 
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Numerical implementation of neighbor search:

Reduction of N2 problem to N problem


• Need nested loop to search for neighbors of atom i: Computational disaster 

• Concept:  Divide into computational cells (“bins”, “containers”, etc.) 

• Cell radius R>Rcut (cutoff) 

• Search for neighbors within cell atom 
belongs to and neighboring cells 
(8+1 in 2D) 

• Most classical MD potentials/force fields 
have finite range interactions 

• Other approaches:  Neighbor lists 

• Bin re-distribution only necessary every 
20..30 integration steps (parameter) 
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Modeling attempts: Multi-body potential


�	 Multi-body potential depend on more than pairs of atoms, but instead 
also on the environment of each atom 

�	 Important for metals due to existence of “electron gas” 
new 

φi	 = ∑ 
1 ϕ(rij ) + F (ρi ) 

j=1..Nneigh 
2 

6 5 

j=1 

2 

i 

3 

4 

Pair potential Embedding 
energy energy 

as a function of 
electron density 

ρi	 Electron density at atom I 
based on a pair potential: 

ρi = ∑π (rij ) 
j=1..Nneigh 

First proposed by Finnis, Sinclair, Daw, Baskes et al. (1980s)	 © 2007 Markus J. Buehler, CEE/MIT 
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Numerical implementation of 

multi-body EAM potential


� Requires two loops over atoms within each cell r 

Loop 1: 
O O 

(i) Pair contributions (derivatives 
and potential) 

(ii) Calculate electron density 

Loop 2: 

(iii) Calculate embedding function 
and derivatives 

Due to additional (i) calculation of electron density and (ii) 
embedding contribution EAM potentials are 2-3 times slower than 
pure pair potentials 



Stacking fault energy: LJ potential vs. 

EAM potential


Consequence: 

Only partial 
dislocations 
expected (schematic) 

Lennard-Jones potential 
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Separation of partial dislocations


Width of stacking fault 

µb2 2 −ν ⎛ 2ν cos(2β ) ⎞ re = ⎜ 1− ⎟
8πγ sf 1−ν ⎝ 2 −ν ⎠ 

Approaches infinity for γ sf → 0
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Deformation of metals: Example


http://www.kuleuven.ac.be/bwk/materials/Teaching/master/wg02/l0310.htm 

Increase? 



Strengthening mechanisms 


??? 

© 2007 Markus J. Buehler, CEE/MIT 



Strengthening mechanisms 


�	 Remember: Theoretical shear strength of materials is not reached due to 
the existence of dislocations 

�	 By hindering the motion or the possibility to create dislocations, the material 
becomes stronger, approaching the theoretical strength 

�	 Mechanisms: 

�	 Grain boundary strengthening 
Image removed due to copyright restrictions. 

�	 Grain size reduction 

�	 Introduction of foreign atoms that create strain field (solid-solution 
strengthening) 

�	 Introduction of particles that pin/hinder 
dislocation motion 	 Image removed due to copyright restrictions. 

http://www.people.virginia.edu/~lz2n/mse209/Chapter7.pdf	 © 2007 Markus J. Buehler, CEE/MIT 

http://www.people.virginia.edu/~lz2n/mse209/Chapter7.pdf


Need: Large system size to generate large 

number of dislocations


� Micrometer range of dislocation-dislocation interactions


� Thus: Need crystal with 100..200 nm side length – 1E9 


© 2007 Markus J. Buehler, CEE/MIT 

atoms 

Mode I tensile loading 



Analysis of a one-billion atom simulation 

of work-hardening


Simulation details Generic 

¾ 1,000,000,000 atom 
φ features of 

atomic 
¾ Lennard-Jones ductile “model 
material” 

r bonding: 
„repulsion vs. 
attraction“ 

Mode I tensile loading 
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Increase in computing power

Classical molecular dynamics


Focus 

(Buehler et al., to appear 2006) © 2007 Markus J. Buehler, CEE/MIT 
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Parallel Molecular Dynamics


(after Schiotz)


Concept: 

Divide the workload 

No (immediate) long range 
interaction (only via dynamics) 

• Each CPU is responsible for 
part of the problem 

• Atoms can move into other 
CPUs (migration) 

• Need to know topology or 
the geometric environment on 
other CPUs (green region) 

• 1,000,000,000 particles on 
1,000 CPUs: Only 1,000,000 
atoms/CPU 



Implementation of parallelization


� Shared memory systems (all CPUs “see” same memory) 
� OpenMP (easy to implement, allows incremental parallelization) 
� POSIX threads 

� Distributed memory systems 
� MPI (=Message Passing Interface)

Most widely accepted and used, very portable, but need to parallelize 
whole code at once 

� Parallelization can be very tedious and time-consuming and may distract 
from solving the actual problem; debugging difficult 

� Challenges: Load balancing, different platforms, input/output, compilers 
and libraries, modifications and updates to codes, “think parallel” as 
manager 

� Strategy for your own code: Find similar code and implement your own 
problem 

© 2007 Markus J. Buehler, CEE/MIT http://nf.apac.edu.au/training/MPIProg/slides/index.html, http://www.openmp.org/, http://www.eecs.umich.edu/~qstout/parallel.html 

http://nf.apac.edu.au/training/MPIProg/slides/index.html
http://www.openmp.org/
http://www.eecs.umich.edu/~qstout/parallel.html


Why is large-scale modeling useful?


�	 Bridging length scales by direct numerical simulation (DNS) 

�	 Understand the behavior of complex many-particle systems, without
imposing constraints or boundary conditions 

�	 Discover new physical phenomena, e.g. collective events that involve 
a large number of particles 

Caution: 
� Need to make sure that model produces useful results, i.e. includes 

new scientific content and discoveries 
� Pictures may be pretty, but what do we learn? 
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Increase in computing power: 

Parallelization


Modeling of mechanical behavior of materials is highly demanding and requires 
models with millions and billions of atoms 

2000 2005 5 µm 
1,000,000,000 70,000,000,000 


particles particles

10 TFLOP 70 TFLOP 

computers computers


0.3 µm 

1.2 µm 

2010 
7,000,000,000,000 particles 

1,000 TFLOP computers © 2007 Markus J. Buehler, CEE/MIT 



Analysis of glide 

plane and Burgers vector


Lattice 
around 
dislocation 

[111] 

b 

[121]


partial dislocation


Stacking fault


Atoms with higher energy Centrosymmetry method
than bulk are highlighted © 2007 Markus J. Buehler, CEE/MIT 



Hardening mechanisms

creation of sessile structure


1. Dislocation cutting processes: Intersection of dislocations 
leads to generation of trails of point defects (trails of partial point 
defects, vacancy tubes and interstitials): when two screw 
dislocations intersect, each acquires a jog with a direction and 

Images removed due length equal to the Burgers vector of the other dislocation. Upon to copyright restrictions. 
intersection, the dislocations cannot glide conservatively since 
each jog has a sessile edge segment. 

- Energy required to create point defects 
- Therefore: Pinning of dislocations – dragging force: 

Different kinds of point defects 

Fdrag 

Trail of partial Vacancy tubes Trail of 
point defects interstitials 

Reduced dragging force 
(20% of vacancy tube) © 2007 Markus J. Buehler, CEE/MIT 



Hardening mechanisms

creation of sessile structure


Reaction of two partials Reaction of one partial w/ SF 

1/3 vacancy defect, volume a0
3/12 (vacancy: a0

3/4) © 2007 Markus J. Buehler, CEE/MIT 
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Hardening mechanisms

creation of sessile structure


Sessile segment 
Pinning 

(Hull & Bacon) 



Hardening mechanisms

creation of sessile structure


Image removed due to copyright restrictions.


The plots show how two 
dislocations (denoted by ‘‘1’’ 
and ‘‘2’’) from opposite cracks 
intersect and create reaction 
products. When a second 
reaction takes place at 
dislocation ‘‘2’’ involving a 
third dislocation, the 
dislocation motion is severely 
hindered which is seen in the 
bowing out of the 
dislocations. Many of such 
reactions occur during the 
simulation causing the 
generation of a complex 
defect network. 
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Hardening mechanisms

creation of sessile structure


Image removed due to copyright restrictions. 

2. Cross-slip 

Activation of secondary slip systems by cross-slip and Frank-Read 
mechanisms: At later stages of the simulation 

• After activation of secondary slip systems: More dislocation reactions (e.g. 
cutting processes). 

• “Rediscovered” Fleischer’s mechanism of cross-slip of partials that 
was proposed 1959 

© 2007 Markus J. Buehler, CEE/MIT 



Observation of cross-slip


Images removed due to copyright restrictions.


• At a critical dislocation density, secondary slip systems are activated 

• This enables for additional plasticity to occur, but also further contributes 
to work-hardening as the dislocation density increases making it more 
difficult for dislocations to move 
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Hardening mechanisms

creation of sessile structure


Images removed due to copyright restrictions.


3. Formation of Lomer-Cottrell locks 

• Formation of sessile Lomer-Cottrell locks, with its typical shape of a straight 
sessile arm connected to two partial dislocations 

• Sessile junctions provide a severe burden for further dislocation glide 
© 2007 Markus J. Buehler, CEE/MIT 



Final sessile structure


Consists of…: 
Vacancy tubes, 
interstitials, partial 
dislocations, and 
sessile dislocations 

Image removed due to copyright restrictions. 

The characteristic structure of the network: 

¾ All sessile defects (both trails of partial and complete point defects) as well as 
sessile dislocations are straight lines that lie on the edges of Thompson’s tetrahedron 
(at intersections of stacking fault planes) © 2007 Markus J. Buehler, CEE/MIT 



Final sessile structure


Image removed due to copyright restrictions. 

See: 
1. 	Buehler, M. J., et al. "The dynamical complexity of work-hardening: a large scale molecular dynamics situation." 

Acta Mechanica Sinica 21, no. 2 (2005): 103-111. 

2. 	Buehler, M. J., et al. "Atomic plasticity: description and analysis of a one-billion atom simulation of ductile materials 
failure." Computer Methods in Applied Mechanics and Engineering 193, no. 48-51 (2004): 5257-5282. 
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Case study: 

Cracking of a copper crystal…


copper


• Critical load for cracking 
• What happens when the load becomes large? 
• How to analyze the complex data? 
• Limitations of modeling… 
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Energy approach to elasticity


© 2007 Markus J. Buehler, CEE/MIT 



Energy approach to elasticity


1st law of TD 

2nd law 
Applied force 

Change in entropy is always greater or equal than the entropy 
supplied in form of heat; difference is due to internal 
dissipation 

Dissipation rate 

External work rate 

Dissipation rate after consider 1st law of TD: 

or 
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Energy approach to elasticity


Elastic deformation: 
Assume only internal energy change 
(more general: δW-dF/dt=0) 

Expand equation dU/dt = dU/dx dx/dt 

Therefore: 

With strain energy density:


© 2007 Markus J. Buehler, CEE/MIT 



Cauchy-Born rule


� Idea: Express elastic energy (strain energy density) for a atomistic 
representative volume element as a function of macroscopic applied strain 

U(l) a function of deformation 
gradient 

� DΩ: Mapping function, e.g. 


� Impose macroscopic deformation gradient on atomistic volume element,
then calculate atomic stress – this corresponds to the macroscopic stress 

� Strictly valid only far away from defects in periodic lattice (homogeneous 
deformation, perfect lattice, amorphous solid-average) 

� Allows direct link of potential to macroscopic continuum elasticity 
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1D example: Cauchy-Born rule


� Impose homogeneous strain field on 1D string of atoms 
� Then get σ ij = cijklε kl 

from that (1+ε) r0 
1 32 

r0 

Φ(ε ) = 
1 φ(r) = 

1 φ((1+ ε ) ⋅ r0 ) Strain energy density 
r0 ⋅ D r0 ⋅ D function 

r0 ⋅ D Atomic volume
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Hexagonal lattice


© 2007 Markus J. Buehler, CEE/MIT 



Cauchy-Born rule: Hexagonal lattice


Small strains: Eij → ε ij
(Eij are Green-Lagrangian strain 
components from hyperelasticity) 
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Cauchy-Born rule: Stress and elasticity 

coefficients


Small strains: Sij → σ ij 

Cijkl → cijkl 

Small deformations (1st order elastic terms):


3 '' 2 2Φ = 
8 

φ (3ε xx + 2ε xxε yy + 3ε yy + (ε yx + ε xy )
2 ) 

This expression is obtained by expanding the potential energy 
(potential) up to second order terms 
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Example: Triangular lattice, LJ potential


ε=1

σ=1


12:6 LJ potential
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Example: Triangular lattice, 

harmonic potential
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� Dislocation nucleation and fracture 
condition 

Ductile or brittle? 
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