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Outline

1. Introduction to Mechanics of Materials
Basic concepts of mechanics, stress and strain, deformation, strength and 
fracture
Monday Jan 8, 09-10:30am

2. Introduction to Classical Molecular Dynamics
Introduction into the molecular dynamics simulation; numerical techniques
Tuesday Jan 9, 09-10:30am

3. Mechanics of Ductile Materials
Dislocations; crystal structures; deformation of metals 
Tuesday Jan 16, 09-10:30am

4. Dynamic Fracture of Brittle Materials
Nonlinear elasticity in dynamic fracture, geometric confinement, interfaces
Wednesday Jan 17, 09-10:30am

5. The Cauchy-Born rule
Calculation of elastic properties of atomic lattices
Friday Jan 19, 09-10:30am

6. Mechanics of biological materials
Monday Jan. 22, 09-10:30am

7. Introduction to The Problem Set
Atomistic modeling of fracture of a nanocrystal of copper. 
Wednesday Jan 22, 09-10:30am

8. Size Effects in Deformation of Materials
Size effects in deformation of materials: Is smaller stronger?
Friday Jan 26, 09-10:30am
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Outline and content (Lecture 3)

Topic: Basic molecular dynamics (MD), interatomic forces, property 
calculation

Examples: Movie of 1,000,000,000 atom simulation
Simple Java applets

Material covered: Review, computing strategies, radial distribution 
function, diffusion, virial stress

Important lesson: How to link microscopic atomistic processes and 
properties with macroscopic observables; first simple model for 
interatomic potential

Historical perspective: Early MD simulations: Thermodynamical
properties of water or noble gases (1960s)
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A simulation with 1,000,000,000 particles

(F. Abraham, et al.)

Image removed due to copyright restrictions.
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Coupled system N-body 
problem, no exact 
solution for N>2

System of coupled 2nd order nonlinear differential equations

Solve by discretizing in time (spatial discretization given by
“atom size”)

Molecular dynamics
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Solving the equations
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0000 +Δ++Δ−−=Δ+ ttatrttrttr iiii

ii maf =
“Verlet central difference method”

Velocities 
at t0

Accelerations
at t0

Positions 
at t0-Δt

How to obtain
accelerations? mfa ii /= Need forces on atoms!
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Time-discretization

Time step Δt needs to be small enough to model the vibrations of atomic 
bonds correctly
Vibration frequencies may be extremely high, in particular for light atoms
Thus:  Time step on the order of 0.1..5 fs (10-15 seconds)
Need 1,000,000 integration steps to calculate trajectory over 1 nanosecond:  
Significant computational burden…

u(t)

t
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Periodic boundary conditions

Sometimes, have periodic boundary conditions;  this allows 
studying bulk properties (no free surfaces) with small number of
particles (here: N=3!) – all particles are “connected”

Original cell surrounded by 26 image cells;  image particles 
move in exactly the same way as original particles (8 in 2D)

Particle leaving box enters on other side 
with same velocity vector. 

Figure by MIT OCW. After Buehler. 
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Numerical implementation of MD



© 2007 Markus J. Buehler, CEE/MIT

How are forces calculated?

Forces required to obtain accelerations to integrate EOM…

Forces are calculated based on the distance between atoms; 
while considering some interatomic potential surface 

In principle, all atoms in the system interact with all atoms:  
Need nested loop 
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Force:  Partial derivative of 
potential energy with respect to 
atomic coordinates
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How are forces calculated?

r
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Force magnitude:  Derivative of potential energy with respect to
atomic distance

To obtain force vector Fi, take projections into the 
three axial directions
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Atomic scale


�	 Atoms are composed of electrons, protons, and neutrons. 
Electron and protons are negative and positive charges of 
the same magnitude, 1.6 × 10-19 Coulombs 

�	 Chemical bonds between atoms by interactions of the 
electrons of different atoms 
(see QM part 
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Figure by MIT OCW. After Buehler. 
Figure by MIT OCW. 
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Atomic interactions

Primary bonds (“strong”)
Ionic, 
Covalent, 
Metallic (high melting point, 1000-5000K)

Secondary bonds (“weak”)
Van der Waals, 
Hydrogen bonds 
(melting point 100-500K)

Ionic:  Non-directional
Covalent:  Directional (angles, torsions)
Metallic:  Non-directional
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Models for atomic interactions

Atom-atom interactions are necessary to compute the 
forces and accelerations at each MD time integration 
step:  Update to new positions!

Usually define interatomic potentials, that describe 
the energy of a set of atoms as a function of their 
coordinates:

Simple approximation:  Total energy is sum over the 
energy of all pairs of atoms in the system
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From electrons to atoms 

r

Energy

Distance
Radius

r

Electrons 

Core 

Governed by laws of quantum mechanics:  Numerical solution by
Density Functional Theory (DFT), for example
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Repulsion versus attraction

Repulsion: Overlap of electrons in same orbitals;  
according to Pauli exclusion principle this leads to high 
energy structures
Model:  Exponential term

Attraction:  When chemical bond is formed, structure 
(bonded atoms) are in local energy minimum;  breaking 
the atomic bond costs energy – results in attractive force

Sum of repulsive and attractive term results in the typical 
potential energy shape:

attrrep UUU +=
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Lennard-Jones potential
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The interatomic potential

The fundamental input into molecular simulations, in addition to structural 
information (position of atoms, type of atoms and their 
velocities/accelerations) is provided by definition of the interaction potential
(equiv. terms often used by chemists is “force field”)
MD is very general due to its formulation, but hard to find a “good” potential 
(extensive debate still ongoing, choice depends very strongly on the 
application)
Popular:  Semi-empirical or empirical (fit of carefully chosen mathematical 
functions to reproduce the potential energy surface…)

φ

r
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r

Forces by dφ/dr

“repulsion”
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Atomic scale (QM) or 
chemical property
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Lennard-Jones potential:  Properties
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Pair potentials
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Physical example: Surface structures

Example: Surface effects in some materials
Need a description that includes the environment of an atom 
to model the bond strength between pairs of atoms

Pair potentials:  All bonds 
are equal!

Reality:  Have environment
effects;  it matter that there is 
a free surface!
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MD updating scheme: Complete
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Courtesy of Dr. Helmut Foell.  Used with permission.
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Neighbor lists

Another bookkeeping device often used in MD simulation 
is a Neighbor List which keeps track of who are the 
nearest, second nearest, ... neighbors of each particle. 
This is to save time from checking every particle in the 
system every time a force calculation is made. 
The List can be used for several time steps before 
updating. 

Each update is expensive since it involves NxN operations 
for an N-particle system. 

In low-temperature solids where the particles do not move 
very much, it is possible to do an entire simulation without 
or with only a few updating, whereas in simulation of 
liquids, updating every 5 or 10 steps is quite common.
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How are forces calculated?
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Analysis methods

Last time, we discussed how to calculate:

Temperature

Potential energy

Pressure

Need other measures for physical and thermodynamic
properties
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MD modeling of crystals:
Challenges of data analysis

Crystals:  Regular, ordered 
structure
The corresponding particle 
motions are small-amplitude 
vibrations about the lattice site, 
diffusive movements over a 
local region, and long free 
flights interrupted by a collision 
every now and then.
MD has become so well 
respected for what it can tell 
about the distribution of atoms 
and molecules in various states 
of matter, and the way they 
move about in response to 
thermal excitations or external 
stress such as pressure.

[J. A. Barker and D. Henderson, Scientific American, Nov. 1981].

Figure by MIT OCW.  After J. A. Barker and D. Henderson.
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Pressure, energy and temperature history

Time variation of system pressure, energy, and temperature in 
an MD simulation of a solid. The initial behavior are transients
which decay in time as the system reaches equilibrium.
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Figure by MIT OCW. 
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Pressure, energy and temperature history

Time variation of system pressure, energy, and temperature in 
an MD simulation of a liquid:  Longer transients

Figure by MIT OCW. 
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Analysis methods
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Radial distribution function

ρρ /)()( rrg =

The radial distribution function is defined as

Provides information about the density of atoms at a given 
radius r;  ρ(r) is the local density of atoms 
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Radial distribution function
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Radial distribution function

http://www.ccr.buffalo.edu/etomica/app/modules/sites/Ljmd/Background1.html

Reference 
atom

Courtesy of the Department of Chemical and Biological
Engineering of the University at Buffalo. Used with permission.
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Radial distribution function:  
Solid versus liquid

Interpretation: A peak indicates a particularly
favored separation distance for the neighbors to a given particle
Thus: RDF reveals details about the atomic structure of the 
system being simulated
Java applet:
http://physchem.ox.ac.uk/~rkt/lectures/liqsolns/liquids.html

solid liquid
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Radial distribution function:  
JAVA applet

Java applet:
Image removed for copyright reasons.
Screenshot of the radial distribution function Java applet.

http://physchem.ox.ac.uk/~rkt/lectures/liqsolns/liquids.html
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Radial distribution function:  
Solid versus liquid versus gas

Note: The first peak corresponds to the nearest 
neighbor shell, the second peak to the second 
nearest neighbor shell, etc.

In FCC:  12, 6, 24, and 12 in first four shells
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Figure by MIT OCW.
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Mean square displacement (MSD) function

( )22 )0()(1 ∑ =−>=Δ<
i

ii trtr
N

r
Position of 
atom i at time t

Position of 
atom i at time t=0

If averaged over all particles:  Mean square distance that particles 
have moved during time t (measure of the average distance a molecule travels)

MSD is zero at t=0;  grows like t2 with a coefficient proportional
to kBT/m

Solid: Expect that MSD grows to a characteristic value (related to 
fluctuations around lattice site), then saturate

Liquid: All atoms diffuse continuously through the material, as in 
Brownian motion

Diffusion: Linear variation of MSD in time t
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Mean square displacement (MSD) function

Liquid Crystal
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Overview:  MD properties
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•The velocity autocorrelation function gives information about the atomic 
motions of particles in the system
• Since it is a correlation of the particle velocity at one time with the 
velocity of the same particle at another time, the information refers to how 
a particle moves in the system, such as diffusion

Diffusion coeffecient (see e.g. Frenkel and Smit): 

Note:  Belongs to the Green-Kubo relations can provide links between 
correlation functions and material transport coefficients, such as thermal 
conductivity, diffusivity etc. 
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Velocity autocorrelation function (VAF)

Liquid or gas (weak molecular interactions):
Magnitude reduces gradually under the influence of weak forces: 
Velocity decorrelates with time, which is the same as saying the atom 
'forgets' what its initial velocity was. 

Then: VAF plot is a simple exponential decay, revealing the presence 
of weak forces slowly destroying the velocity correlation. Such a result 
is typical of the molecules in a gas. 

Solid (strong molecular interactions):
Atomic motion is an oscillation, vibrating backwards and forwards, 
reversing their velocity at the end of each oscillation. 
Then:  VAF corresponds to a function that oscillates strongly from 
positive to negative values and back again. The oscillations decay in 
time.

This leads to a function resembling a damped harmonic motion.   
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Velocity autocorrelation function

http://www.eng.buffalo.edu/~kofke/ce530/Lectures/Lecture12/sld010.htm
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Courtesy of the Department of Chemical and Biological Engineering of the University at Buffalo. Used with permission.
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Velocity autocorrelation function

The velocity 
autoccorelation
function for an 
ideal gas, a dense 
gas, a liquid, and a 
solid
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The concept of stress

Undeformed 
vs. deformed
(due to force) A

F
=σ

A = cross-sectional area

Force F
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Atomic stress tensor:  Cauchy stress

How to relate the continuum stress with atomistic stress

Typically continuum variables represent time-/space averaged 
microscopic quantities at equilibrium 
Difference:  Continuum properties are valid at a specific 
material point;  this is not true for atomistic quantities (discrete 
nature of atomic microstructure)

Continuous fields ui(x)

Discrete fields ui(x)

Displacement
only defined
at atomic 
site
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Atomic stress tensor:  Virial stress

Virial stress:

D.H. Tsai. Virial theorem and stress calculation in molecular-dynamics. J. of Chemical Physics, 70(3):1375–1382, 1979.

Min Zhou, A new look at the atomic level virial stress: on continuum-molecular system equivalence, 
Royal Society of London Proceedings Series A, vol. 459, Issue 2037, pp.2347-2392 (2003)

Jonathan Zimmerman et al., Calculation of stress in atomistic simulation, MSMSE, Vol. 12, pp. S319-S332 (2004) and references in 
those articles by Yip, Cheung et al.

http://ej.iop.org/links/q12/tWFV6mZig3VMoH,nK2DO8w/nano3_11_009.pdf
http://ej.iop.org/links/q67/dpRsM7WvMemOvng7LbbU7A/msmse4_4_S03.pdf
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Other transport properties

http://www.cbe.buffalo.edu/courses/ce530/Lectures/Lecture12/sld011.htm
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MD properties:  Classification

Structural – crystal structure, g(r), defects such as vacancies and 
interstitials, dislocations, grain boundaries, precipitates

Thermodynamic -- equation of state, heat capacities, thermal 
expansion, free energies

Mechanical -- elastic constants, cohesive and shear strength, elastic 
and plastic deformation, fracture toughness

Vibrational -- phonon dispersion curves, vibrational frequency 
spectrum, molecular spectroscopy

Transport -- diffusion, viscous flow, thermal conduction
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Modeling vs. simulation

Modeling:  Building a mathematical or theoretical 
description of a physical situation; maybe result in a set of 
partial differential equations

For MD:  Choice of potential, choice of crystal structure,…

Simulation:  Numerical solution of the problem at hand 
(code, infrastructure..)

Solve the equations – e.g. Verlet method, 
parallelization (later)

Simulation usually requires analysis methods –
postprocessing (RDF, temperature…)
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Limitations of MD: Electronic properties

There are properties which classical MD cannot calculate 
because electrons are involved.

To treat electrons properly one needs quantum mechanics. 
In addition to electronic properties, optical and magnetic 
properties also require quantum mechanical (first principles 
or ab initio) treatments. 
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Unified study of all physical properties. 

Using MD one can obtain thermodynamic, structural, 
mechanical, dynamic and transport properties of a 
system of particles which can be a solid, liquid, or gas. 

One can even study chemical properties and reactions 
which are more difficult and will require using quantum 
MD.

(adapted from Sid. Yip,  Nuclear Engrg./MIT)

What makes MD unique…
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Several hundred particles are sufficient to simulate bulk 
matter. 

While this is not always true, it is rather surprising that 
one can get quite accurate thermodynamic properties 
such as equation of state in this way. 

This is an example that the law of large numbers takes 
over quickly when one can average over several 
hundred degrees of freedom.

(adapted from Sid. Yip,  Nuclear Engrg./MIT)

What makes MD unique…
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Unified study of all physical properties. 

Using MD one can obtain thermodynamic, structural, 
mechanical, dynamic and transport properties of a 
system of particles which can be a solid, liquid, or gas. 

One can even study chemical properties and reactions 
which are more difficult and will require using quantum 
MD.

(adapted from Sid. Yip,  Nuclear Engrg./MIT)

What makes MD unique…
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Direct link between potential model and physical 
properties. 

This is really useful from the standpoint of fundamental 
understanding of physical matter. 

It is also very relevant to the structure-property 
correlation paradigm in materials science. 

(adapted from Sid. Yip,  Nuclear Engrg./MIT)
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Direct link between potential model and physical 
properties. 

This is really useful from the standpoint of fundamental 
understanding of physical matter. 

It is also very relevant to the structure-property 
correlation paradigm in materials science. 

(adapted from Sid. Yip,  Nuclear Engrg./MIT)
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Detailed atomic trajectories. 

This is what one can get from MD, or other atomistic 
simulation techniques, that experiment often cannot 
provide. 

This point alone makes it compelling for the 
experimentalist to have access to simulation.

(adapted from Sid. Yip,  Nuclear Engrg./MIT)

What makes MD unique…
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Summary

Discussed additional analysis techniques: “How to extract useful 
information from MD results”

Velocity autocorrelation function
Atomic stress
Radial distribution function …

These are useful since they provide quantitative information about 
molecular structure in the simulation; e.g. during phase 
transformations, how atoms diffuse, elastic (mechanical) properties …

Discussed some “simple” interatomic potentials that describe the 
atomic interactions; “condensing out” electronic degrees of freedom

Elastic properties:  Calculate response to mechanical load based on 
“virial stress”

Briefly introduced the “training” of potentials – homework assignment



Ductile versus brittle materials


BRITTLE DUCTILE 

Glass Polymers 
Ice... 

Shear load 

Copper, Gold 
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Figure by MIT OCW. 
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Deformation of metals:  Example

Image removed for copyright reasons.
See:  Fig. 4 at http://www.kuleuven.ac.
be/bwk/materials/Teaching/master/wg02/l0310.htm.

Image removed for copyright reasons.
See:  Fig. 6 at http://www.kuleuven.ac.
be/bwk/materials/Teaching/master/wg02/l0310.htm.
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Griffith, Irwine and others:  Failure initiates at defects, such as cracks, or 
grain boundaries with reduced traction, nano-voids

Deformation of materials:
Flaws or cracks matter

Failure of materials initiates at cracks

Stress σ

“Macro”
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Plot of stress changes at the edge of elliptical cavities. 
Normalized maximum stress is σyy/σ0*; insets at top 
show ellipse orientations. The dashed horizontal line 
shows the level of stress change in the plate without a 
cavity present. Arrow shows stress concentration (3.0) 
for the circular hole (a =b).
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Geometry for calculating stress
in a plate with a circular hole.Figure by MIT OCW.

Figure by MIT OCW.
Figure by MIT OCW.




