
Review for Exam 2 
Ben Wang and Mark Styczynski 

 
This is a rough approximation of what we went over in the review session.  This is 

actually more detailed in portions than what we went over.   
 

Also, please note that this has not been proofread fully, so it may have typos or other 
things slightly wrong with it, but it’s a good guide towards what you should know about. 

 
Finally, be familiar with what is in your book so that if there’s something on the exam 

that you don’t know well (e.g., LU decomposition from the last exam), you at least know 
where to look for it. 

 
Chapter 4: IVPs 
 
Objective: develop iterative rules for updating trajectory with the objective of getting 
numerical solution to equal to the integration of the exact solution 
 
Converting higher-order differential equations into systems of coupled first-order 
differential equations. 
What is quadrature? 
Numerical integration will involve ‘integrating’ a polynomial  that is why polynomial 
interpolation is important 
Polynomial interpolation: 
Polynomial interpolation is accomplished by definining N support point which the 
polynomial will equal the function at.  We define the polynomial: 
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for j = 0,1,2,…N 
 
You can solve this like way back in the day with a linear system.  But let’s find a better 
way of doing this. 
 
Lagrange interpolation 
For N support points, Lagrange interpolation is the sum of N lagrange polynomials, each 
of which are of order x N-1, designed to fit closely (exactly?) at a specified support point. 
 
Now that we have a sum of polynomials or a single polynomial, we can integrate this 
numerically, using trapezoidal rule, Simpson’s rule etc. 
 
Integration: Newton-Cotes  uniformly spaced points 



Different methods: trapezoid rule, simpson’s rule 
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How to get more accurate? 
 Break into smaller segments before making too many more points 
How to integrate in two dimensions? 
 Make a rectangle containing all points, and multiply the function you are 
integrating by an “indicator” function that says whether you are in the area to be 
integrated (indicator = 1) or not (indicator = 0) 
This all relates to time integrals 
Linear ODE systems and dynamic stability: 
Linear system, begin with a known ode problem x_dot = Ax.  You can expand the 
exponential solution to analyze the results 
Looking at a linear system which gives rise to a discussion on stability and behavior of 
solution. 
Nonlinear ODE systems: 
Same type of anlaysis, now we use a Taylor expansion, invoking the Jacobian. 
Time marching ODE-IVP solvers: 
Explicit methods: generates a new state by taking a time-step based on the function value 
at the old time-step. 
Explicit Euler method 
 Uses Taylor approximation, gives first order error globally (second order local, 
but O(delta t) time steps, so O(delta t) error) 
 [ ] [ ] [ ]( )1k k kx x t f x+ = + Δ ⋅  

Runge-Kutta methods 
 Still explicit, but uses midpoints 
 Second-order RK: 
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 Can get higher order ones. 
 RK 4th-order is basis of ode45 
4th order RK  you just have to know the value of the function at the current state and a 
time step and you can generate the new state. 
How does ode45 get estimate of error? 
 Use 5 function evaluations to get 5th order accurate, also gets 4th order accurate, 
compare two to see how accurate you are  then know if need to make delta_t smaller or 
bigger 



Implicit methods: 
update rule depends on previous values of x at time in the immediate past.  Use of 
interpolation to approximate an update. 
 Why is it difficult to use x[k+1] to get your derivative? 
  Because that is nonlinear, requires a difficult solution 
 Is this more accurate than explicit in all cases? 
  No, same order-accuracy for explicit Euler vs. implicit Euler 
 Are these methods used? 
  Yes, quite frequently. 
 Why or why not? 
  Because they are more stable to larger time steps for stiff equations… they 
won’t “blow up”. 
 Basic implicit Euler: [ ] [ ] [ ]( )1 1k k kx x t f x+ += + Δ ⋅  

 Others, like Crank-Nicholson: [ ] [ ] [ ]( ) [ ]( )1 11
2

k k k kx x t f x f x+ +⎡ ⎤= + Δ ⋅ +⎣ ⎦  

 Predictor/corrector method: 
  Use explicit method to generate an initial guess 
  Then use Newton to iteratively find real solution to implicit equation 
 Predictor/corrector method ought to converge well for Newton? 
  Yes, because guess should be relatively near correct value 
DAE systems: 
 What are they? 
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 where y are variables in ODEs, z are other variables 

 Mass matrix: indicates where the differential parts are 
 Is mass matrix singular? 
  If it’s a DAE, yes.  Otherwise, it’s just an ODE system. 
 What conditions do we need to solve this using an ODE solver? 
  DAE system to be of index one: the determinant of the Jacobian of the 
nonlinear equalities must be nonzero. 
 So that leaves us with: 
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Stability of systems’ steady states: 
 Take Jacobian 
 Evaluate at steady state 
 Find eigenvalues 
 If real part of all is < 0, stable 
 If <=0, quasi-stable (indifferent to perturbations in some direction) 
 If any > 0, unstable 
Don’t be confused by stability of integrators and stability of a system’s steady state. 
 The integrator creates a “system” based on its solution method, and we evaluate 
that system’s stability. 

Global vs. Local error Global vs. Local error 

Global vs. Local error 



 
Which ODE integration routines are more stable? 
 Explicit RK vs. Implicit Euler 
Which will have less error in a non-stiff system? 
 Explicit RK vs. Implicit Euler 
 
Stiff/not stiff systems: 
 Eigenvalues of Jacobian 
 
 Definition 
 Conceptual (different time scales) 
 Condition number: indication of number of steps needed to integrate properly 
 When to use ode15s vs. ode45? 
  Condition number >>1 or not 
 When will you know things will be stiff/not stiff? 
  Single ODE equation: not stiff 
  Discretized PDEs: stiff 
 What to do if not sure?   
  Try ode45, if fails, use 15s 
 
Ways to speed things up in Matlab? 
 Return Jacobian of system of ODEs at the supplied point. 
 
Chapter 5: Optimization 
Use the gradient of the cost function to find the downhill direction you may want to look 
in 
Use the Hessian of the gradient to figure out how close to that gradient direction you 
want to look, and exactly how far you’d want to go if local conditions stayed constant 
globally 
This is using (essentially) a Newton method in multiple dimensions to find the optimum 
Analogy to solving nonlinear algebraic systems 
Adding to the Hessian matrix:  H  B 
 Add to the main diagonal to make sure matrix is positive definite 
  (an application of Gershgorin’s theorem) 
 What does this do for us? 
  Ensures that we are at least going in the right direction 
Then we figure out just how far in final direction we want to go: 
 Alpha/2 until we can get a decrease in function value. 
Gradient methods 
Newton line search methods to find better updates for p and step lengths. 
What about constraints? 
 Use method of LaGrange multipliers 
 Require not that we find local minimum of solution, but that we find place where 
local curvature of cost function is parallel to local curvature of constraint function 
Why not just use “penalty” function? 



 As penalty weight gets too big, it becomes even more important than the actual 
minimization, so it becomes a problem that is numerically difficult to solve. 
 LaGrangian method converts problem into sequence of unconstrained 
minimizations, or relaxations. 
Inequality constraints: use slack variables to make equality constraints. 
For a minimum, the Hessian should be positive-definite. 
Lagrangian methods: Penalty method, Lagrange multipliers 
 Equality  constraints 
 Inequality constraints 
 
 
Chapter 6: PDE-BVPs 
Finite difference method 
So that will give us a linear system of equations for simple problems… but in 2-D or 3-D, 
fill-in makes Gaussian elimination an unacceptable option. 
For symmetric matrices, can turn into a minimization problem… but don’t use Hessian, 
just use identity matrix  method of steepest descent 
But that may be slow to converge at times, so can add in some term that will make it not 
go directly downhill but will make sure it doesn’t double back on self  “conjugate 
gradient method” 
 In N-D, solves in N iterations or less 

 Utilizes the fact that when Ax=b, ( ) 1
2

TF x x Ax b x= − T  is minimized 

If matrix is not symmetric, can do a similar thing but slightly more general  “general 
minimized residual method” 
 
10.50-ish stuff: 
 Dirichlet BCs (e.g., Ca = constant) 
 von Neumann BCs (e.g., dCa/dx = constant) 
 Uneven gridpoint spacing 
  How to do it (LaGrange interpolation) 
  Why to do it (non-linear action, or action in a small portion of the graph) 
 Danckwerts BC’s 

  ( ) 0
0

0 0j
z j j

z

dC
v C C D

dz
=

⎡ ⎤− − =⎣ ⎦  

  What it does (allows for both von Neumann and Dirichlet boundary 
conditions to be possible and/or balanced) 
 Outlet on end of reactor: BC? 
  If know nothing better, assume reaction is done (dCa/dz = 0) 
 Convection: 
  Central Difference Scheme: better for error 
  Upwind Difference Scheme: better for stability 
 Variable stacking: 
  Put things that will be interacting near each other in the matrix 
 



 
Things to note: 
 

- how to reduce order of differential equation so that you can solve a system of first 
order odes 

- Euler’s formula 
- How to calculate Jacobian 
- How to calculate eigenvalues 
- Keep in mind Geshorgin’s theorem 
- Symmetric Matrices 
- Positive definite or Negative Definite property of matrices 

 
Useful Matlab functions: 
**interp1 
**trapz 
**quad 
**ode45 
**ode15s 
**fmincon 
**fminunc 
** optimset(‘JacobPattern’,matrix) 


