10.34: Numerical Methods

Applied to
Chemical Engineering

Lecture | 1:
Unconstrained Optimization
Newton-Raphson and trust region methods



Recap

® Optimization

® Steepest descent



Recap

® Method of steepest decent: X;11 = X; — 0;8(X;)

® Estimating an optimal «; with a Taylor expansion:

Floxin) = f(x) — is(x)T(xi) + pode(xi) TH(xi)g(xi) + ...

® This is quadratic in «;, so find the critical point:
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® Method of steepest decent: X;11 = X; — 0;8(X;)
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Unconstrained Optimization

® Conjugate gradient method:

1

e Consider the minimization of: f(x) = §XTAX — blx
g(x) =V[f(x)=Ax—b
H(x)=A
® This has a minimum when!
®* Ax=Db
e the Hessian, A, is symmetric, positive definite
® |[terative method: X; 11 = X; + a;P;
® P, is a descent dir. but not necessarily the steepest

® |et’s determine the optimal «; for a given pP;



Unconstrained Optimization

® Conjugate gradient method

1

f(xip1) = f(x3) + &ig(Xz‘)TPi T 504@2P?AP

e f(x;,1)is quadratic in «; . -

e f(xX;11)is minimized when o; = g(}TCZ) b:
P; Ap;

® For a given direction p; there is an optimal step size ¢
® How can we choose the optimal direction!?
® f(x;11)Is already minimized along p;: g(XHl)Tpi =0
e Can this hold for f(x;, ) also?
e Let g(X;y2)' p; =0, then:

A (i1 + @ip1Pit1) — b]' pi=0=p},,Ap; =0



Unconstrained Optimization

® Conjugate gradient method:

1

f(xip1) = f(x3) + &ig(Xz‘)TPi T 504@2P?AP

e f(x;,1)is quadratic in «; . -

e f(xX;11)is minimized when o; = g(}TCZ) b:
P; Ap;

® For a given direction p; there is an optimal step size ¢
® How can we choose the optimal direction!?
® f(x;1)is already minimized along p;: g(x;41)" pi; = 0
e Can this hold for f(x;, ) also?
e Let g(X;y2)' p; =0, then:
Pi+1 = —8(Xit1) + Bit1Pi,  Bit1 = .T




Unconstrained Optimization

® Method of steepest decent/conjugate gradient:

® Example: f(X) - gp% + 1();1;3 A — ( (1) 100 ),b:()

e Contours for the function: o; = 0.015 in SD
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Unconstrained Optimization

® Conjugate gradient method:
e Used to solve linear equations with O( N )iterations
® Requires only the ability to compute the product:

® The actual matrix is never needed. We only need
to compute its action on different vectors, Ay!

® Only for symmetric, positive definite matrices.

® More sophisticated minimization methods exist for
arbitrary matrices.

e Optimization applied to linear equations is the state-of-
the-art for solutions of linear equations.



Newton-Raphson

Finding local minima in unconstrained optimization
problems involve solutions of the equation:

g(x) =Vf(x)=0
® at minima in f(x)

If we begin close enough to a minimum, can we expect
the NR method to converge to that minimum?

® Yes! NR is locally convergent.
® Accuracy of the iterates will improve quadratically!

Newton-Raphson iteration:

What is the Jacobian of g(x)?
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Unconstrained Optimization

® Method of steepest decent/Newton-Raphson:

* Example: f(x) = a:% + 10:133

e Contours for the function: a; = 0.0195
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Unconstrained Optimization

® Method of steepest decent/Newton-Raphson:

® Example:

® Contours for the function: &¢; =

log f(x) = z7 + 1023
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Newton-Raphson

e Compare:

® Optimized steepest decent:

g(x;)" g(x;)
® X;11 =X; — Oéz'g(Xz’) with o; =
g(x;) T H(x;)g(x;)
® Newton-Raphson:
o x; 11 = X; — H(x;) ™ 'g(x;)

® What is the difference!?
® What are the strengths of Newton-Raphson?
® What are the weaknesses of Newton-Raphson?
® What are the strengths of steepest descent?

® What are the weaknesses of steepest decent!
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Trust-Region Methods

® Both Newton-Raphson and the optimized steepest
descent methods assume the objective function can be
described locally by a quadratic function.

A

® That quadratic approximation may be good or bad
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Trust-Region Methods

® Both Newton-Raphson and the optimized steepest
descent methods assume the objective function can be
described locally by a quadratic function.

A
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® That quadratic approximation may be good or bad
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Trust-Region Methods

® Trust region methods choose between the Newton-
Raphson direction when the quadratic approximation is
good and the steepest decent direction when it is not.

Newton-Raphson
Steepest decent
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® This choice is based on whether the Newton-Raphson
step is too large.

18



Trust-Region Methods

Newton-Raphson

. ANR _ —1
 Newtonstep:d; ™ = —H(x;) "g(x;) Steepest decent

® Steepest decent: de = —;g(x;) ‘
oif |dNP|y < Ryand f(x; + dNF) < f(x;) ¢

® Take the Newton-Raphson step e

® Else

® Take a step in the steepest descent direction

o If||[d3P |y < R; and f(x; +dPP) < £(x;) with
optimal step size

® Take the optimal steepest descent “
® FElse step to the trust boundary using: ‘4
a; = R;i/||g(xi)]2

19



Trust-Region Methods

® The size of the trust region can be set arbitrarily initially.

® The trust region grows or shrinks depending on which of
the two steps we choose.

e |f the Newton-Raphson step was chosen:

® The quadratic approximation has minimum value:

1
¢ = f(xi)+g(x:)" di + §d;‘rH(Xi)dz’
¢ GROW the trust-radius when ¢ > f(x; + d;),
because the function was smaller than predicted

® otherwise, SHRINK the trust-radius.

® |f the steepest descent step was chosen, keep the trust
radius the same.
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Trust-Region Methods

® What is a good value of the trust-region radius!?
e MATLAB uses one initially!

® Variations on the trust-region method exist as well.

® MATLAB uses the dog-leg step instead of the optimal
steepest descent step:

Newton-Raphson
Optimal steepest decent
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Unconstrained Optimization

® Method of steepest decent/Newton-Raphson/

e Example: log f(x) = (25 + 1023)°

® Contours for the function: &¢; =
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Unconstrained Optimization

® Method of steepest decent/Newton-Raphson/

® Exampl
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e: log f(z) = (27 + 10z3)*

ontours for the function: o; =
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