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Definitions 

• We’re comparing experimental Data points yi 
mesured with knob settings “x” to model 
predictions fi(x,θ)  where θ are the parameters 
in the model we cannot control 
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Start by assuming large number N of 
repeats of each experiment… 

• By central-limit-theorem of statistics, for case 
with a single observable, a true model, accurate 
parameters and knob values, and many repeats: 
 p(<y>|x,θ) = (2π)-1/2 σ-1 exp (-χ2/2) 

• Where χ2 = ({<y> - f(x,θ)}/σ)2  
And estimated variance of the mean σ = (<y2>-<y>2)/N2 

• For multiple quantities measured on same 
experiment need to consider Covariance of data: 
Covij = {Σ (yi,n - <yi>)(yj,n - <yj>)} / N 

• So we estimate Covariance of the Means (for 
large N):  Cij ~ Covij / N 
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For many experiments dependent on 
same parameters θ 

Each measurement repeated many times with same knob 
settings xm, then new knob settings; all the knob settings xm(k) are 
stored in matrix X. The mean measurements are stored in a K-
vector <y>. If multiple observables {yi, yj, ...} measured in each 
experiment K>M. 

 p(<y>|X,θ)=(2π)–K/2|C|-1/2 exp( - ½ χ2) 
where  
 χ2 = ΣΣ (<yk>-fk(xm(k),θ))Dkz(<yz>-fz(xm(z),θ))  
and D = inv(C)       
• Often the covariance is ignored, then Dkz = δkzσk

-2 
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Probability of observation depends on 
χ2; if very improbable we flag a 

discrepancy between model & data 
• User must decide tolerance on “improbable”.  
• For example: If you decide <5% chance is 

improbable, and you performed 12 experiments 
(each repeated many times to get a good average 
<yk> and estimate of σk) and adjusted 2 model 
parameters, then you can use Matlab function 
chi2inv: 

       chi2max = chi2inv(0.95,12-2) 
      in this case case chi2max =18.3 
if measured χ2 > 18.3 you would say there is a 
discrepancy between the model and the data 
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Origin of chi2inv 
The probability that a measured data set (with many repeats) would 
yield a χ2<Q is given by: 

Prob(χ2<Q) = ∫∫ dK<y> p(<y>|X,θ) H(Q-χ2) 
where H is the Heaviside function. 
This K-dimensional multiple integral can be simplified by change of 
variables to the single integral shown in the Matlab chi2inv 
documentation.  
If M parameters have been adjusted to fit the data it is customary to 
use K-M degrees of freedom when computing chi2inv (this assumes 
each parameter adjustment really improved the fit). If no adjustment 
to fit the data (a pure prediction), M=0. 
If you select a desired Probability, that choice fixes the value of Q (aka 
chi2max). 
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Once we have decided the maximum 
χ2 we will tolerate Q, than we have 
defined a “region of indifference” in 

parameter space 
• As far as we can tell from our experiment, any θ 

which gives a “good enough” fit is OK, we cannot 
discriminate. 

• To see the range of acceptable parameter values, 
plot the hypersurface χ2(θ)=Q. Any θ inside the 
surface is acceptable. 

• For a model which depends nonlinearly on the 
parameters, the shape of the region can be quite 
convoluted…. 
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Bayesian view 

p(X,θ|<y>) = pprior(θ)pprior(X)p(<y>|X,θ)  
where “prior” means “we have other prior 
information about these values, not just what we 
can infer from this data set”. 
Usually journal readers are not interested in our 
imprecise knowledge of our knob settings, so we 
integrate this uncertainty out to get our new 
improved “posterior” p(θ) that we will report: 
p(θ)= pprior(θ) ∫∫ dWX pprior(X)p(<y>|X,θ)  
Contours of this new p(θ) can also have a very 
convoluted shape… 
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Simplifying from confidence regions to 
separate confidence intervals 

• Often people like to report parameter values 
one at a time, e.g. if one θ is a heat capacity: 

 Cp(533 K) = 89.3 ± 0.2 J/mol-K   
• Usually people report the best-fit value as the 

nominal value and then need to give an 
estimate of the confidence interval. One way 
to compute the upper limit of the interval: 

        θv,max = maxθ θv 

  s.t. χ2(θ)<Q 
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Correlation of parameters 

• Often two parameter values are highly 
correlated, e.g. you can get a good fit if θ1 and θ2 
have some relationship e.g. θ1+θ2 = const or θ1/θ2 
= const, but very poor fits for other values of 
(θ1,θ2). This information is lost if you just report 
the values and error bars separately. 

• Sometimes you can change parameters to the 
appropriate well-determined combination. 

• How to report the correlation of determined 
parameter values? 
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Correlation of parameters, page 2 

• Usually what is done is to compute the Hessian of χ2(θ) 
evaluated at θbestfit. Diagonalize this matrix; its 
eigenvectors are the principal components of a hyper-
ellipsoid that (exactly for a linear model, approximately 
otherwise) describes the region of indifference. 

• If an eigenvector has large components from more 
than one parameter, that means the parameters are 
correlated. The “covariance of the parameters” is given 
by Cjk = Σ VjiVki/λi 

• This can be computed by SVD, often this is more 
numerically stable, see Numerical Recipes. 
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A note about Hessian of χ2 

• The rigorous formula for the second derivative of 
χ2 includes two terms. 

• Almost everyone neglects the second term, which 
is sensitive to noise in the data, and just uses: 

    Hlz ~ Σ Jkl Jkz σk
-2      where Jkl = ∂fk/∂θl 

• Note now the Hessian doesn’t really depend on 
the experimental data (at all for a linear model), 
you can compute it before the experiment 
begins…see page 413 in Beers’ text. His “X” is the 
Jacobian of the model w.r.t. to the θ. 
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Are the Model & Data Consistent? 
Often, the measured χ2 is greater than the Q you would 
compute from chi2inv. What do you need to check 
before you say you have disproved the model? 
1) Need to be sure you have found the very best possible values of all 
the parameters. Can have many local minima. Global optimization?  
2) Need to be sure you have done enough repeats. If N is small 
probability is non-Gaussian with “fat tail”. 
3) χ2 is extremely sensitive to estimate of σ (or D). Double check if you 
really believe these values.  
4) Uncertainties in X and any parameters θ you did not adjust might 
affect χ2. Perhaps you can include these uncertainties in σ. 
5) Often models are idealizations that do not really match 
experimental boundary conditions, mixing, etc. Can be tricky to try to 
rig up a model that really matches your experimental apparatus. 
6) Be sure that you modeled ‘instrumental function’ or calibration of 
your signals carefully. 
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Experimental Design 
• For linear models, you can compute the covariance of 

the model parameters BEFORE you do any 
experiments. Often you want to design the experiment 
so you are only sensitive to one or two parameters. 
– Do it! So many people do experiments and then 

afterwards realize they cannot possibly determine their 
parameter of interest from the data. 

– Sometimes you can fix the problem by using different knob 
settings X. You can play with this in your model before you 
do the experiments. 

• Even for nonlinear models you can do this ahead of 
time, using the Jacobian evaluated at your prior 
nominal value of θ. 
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