10.34: Numerical Methods

Applied to
Chemical Engineering

Lecture |6:
ODE-IVP and Numerical Integration



Quiz | Results

® Mean:70.6

® Standard deviation: | 1.0
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Recap

® |mplicit methods for ODE-IVPs



Recap

® Example:

® Use implicit Euler to solve:

dx
= Ax, x(0) = xg

Give a closed form formula for the numerical solution



Recap

® Example:

® Use implicit Euler to solve:

dx

= Az, x(0) = xg
® |et:
eta:'k = x(kAt)
Lk+1 — Tk -+ At)\ZUk+1
1
TR = T AR AL
| k
k= (1 - At)\> 0
® Stability:

11— AtA] > 1= (1 — AtRe)N)? + (AtIm))* > 1

5



Recap

® Example:

® Use implicit Euler to solve:

d
d—atj = \z,x(0) = xg

® Numerical solution:

1 k
Tk (1 —AtA> "0

® Exact solution:

At

2 = zoef At

® Stability and accuracy do not correlate!



Multistep Methods

® Multistep methods utilize information over multiple time steps to
approximate the solution of an ODE.

® These can be designed for higher accuracy, larger stability bounds or
both.

® Example: Leapfrog method

dx
= E(x(0).1)

® Approximate derivative with central difference:

1
2At

X(tk_|_1) — X(tk_l) -+ QAtf(X(tk), tk)

(x(t + At) — x(t — At)) = f(x(t), 1)

k—1___ k+1




Multistep Methods

® | ocal accuracy of the leap frog method:

dx 1

— = o7 (X(tki1) = (1)) + O((AD)7) = £(x(tk), 1)
X(ths1) = x(tp—1) + 2AtF (x(t1), tr) + O((At)?)
e Stability of the leap frog method: dx

2y
at

Tht1 = Th—1 + 2AtAxy,

Tl - 1 0 Llk—1



Multistep Methods

® | ocal accuracy of the leap frog method:

dx 1
— = A7 (x(tps1) — x(tp—1)) + O((A)?) = f(x(t), t)
X(thi1) = xX(tp_1) + 2AtF (x(t), ti) + O((AL)?)

e Stability of the leap frog method: dx

2y
a7

Th+1 = Th—1 + 2AtA\x)

What are the eigenvalues of this matrix?



Multistep Methods

® | ocal accuracy of the leap frog method:

dx 1
— = A7 (x(tps1) — x(tp—1)) + O((A)?) = f(x(t), t)
X(thi1) = xX(tp_1) + 2AtF (x(t), ti) + O((AL)?)

e Stability of the leap frog method: dx

2y
a7

Tht1l = Th—1 T 2At)\xk

® Both eigenvalues of (C must be bounded:

AL\
At + \/(At)\)2—|—1| <1 p
consider when |At\| < 1: < >

‘At)\ -+ 1‘ <1 v 10




Multistep Methods

® Exercise:

® Should | use the leap frog method to integrate the equations of
motion for a mass-spring system!?

d?x

® |f so, what time steps should | limit myself to?

® |f not, what other integrator could | use!?



Multistep Methods

® Exercise:

® Should | use the leap frog method to integrate the equations of
motion for a mass-spring system!?

® Transform to system of first order ODEs:

TOREERIE

® Figenvalues of matrix: )\ = 474/ —

T
® Since eigenvalues are imaginary, leap frog is stable when:

44
At < |2
<\ %




Multistep Methods

® Multistep methods can be implicit as well such as the backward
differentiation formulas or Adams-Moulton integrators.

® Example: Backwards differentiation

4 1 2
Xk+1 — §Xk — ng—l - gAtf(XkJrl,thrl)

® Second order accurate.

® How would you identify the stability bounds?
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Numerical Integration

® Consider the definite integral:

/t :‘f £(r)dr

® \We can define a variable:

® which, if f(t) is continuous, satisfies the differential equation:

d
—x(t) = £(7), x(to) =0

® Thus, a definite integral of a known, continuous function can be
determined using methods for ODE-IVPs to compute:

X(t5)
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Numerical Integration

Consider the definite integral:

/t :f £(r)dr

If the discontinuities inf(t) are known, then ODE-IVP solvers can be

used in the domain between the

discontinuities too!

If the discontinuities in f(t)are unknown, then Monte-Carlo methods
(discussed later are a better option).

This approach is efficient with adaptive time stepping methods because

an appropriate spacing between
changes more or less rapidly wit

boints can be chosen when ¢

(1)

For multi-dimensional integrals, this approach is not as straightforward,

however.
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Numerical Integration

® One alternative is integration by polynomial interpolation:

t Nty N oty
/ f(7)dr = Z/ f(r)dr ~ Z/ P (7)dr
t k=1" tk—1 k=1" tk—1

0

e where P} (T)is a polynomial approximation of f(T) in the

domain
T € |tp—1, tk]
® |f the size of the domains of integration and the order of the

polynomial interpolant can be used to control the accuracy of the
Integration.

® Example: quadratic interpolation — Simpson’s rule:

Py (r) = f(ti-1) + —— (E(t) — £(tx-1) (7 — i)

/t | Py (7)dr = % (£(tk) + £(te-1)) (tk — tr—1) '6




Numerical Integration

® One alternative is integration by polynomial interpolation:

t Nty N oty
/ f(7)dr = Z/ f(r)dr ~ Z/ P (7)dr
t k=1"th—1 k=1"th—1

0
® where Pk (T)is a polynomial approximation of f(T) in the
domain
T & [tk—la tk]

® |f the size of the domains of integration and the order of the

polynomial interpolant can be used to control the accuracy of the
Integration.

® Example: quadratic interpolation — Simpson’s rule:

/ttk P (7)dr = % (F(tg) +4F((tp +te1)/2) + £(te_1)) (T — tie_1)

k—1
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Numerical Integration

® Multidimensional integration:

® Of thesort: (yy 2U
/ / f(y, z)dydz
Y Z

L L

® For any number of dimensions larger than 3, this is best handled
with Monte Carlo methods

® For dimensions less than 3, this integration can be done with
polynomial interpolation.

® Fit the function to a polynomial of a prescribed degree within
small regions of the domain of integration.

® Sum integrals over the polynomial fits in each fit region.

® This fails with higher dimensions because the number of fit
regions grows exponentially with dimension.

~ [ & ’

® Example:




Numerical Integration

® Improper integrals:

® Of the sort: 00
/ f(7)dr
{

0
® Can be split into two domains of integration

/: £(7)dr = /ttf £(7)dr + /t :O £(r)dr

® The first integral can be handled with ODE-IVP methods or
polynomial interpolation

® The second must be handled separately through either:
® transformation onto a finite domain
® or substitution of an asymptotic approximation

® This same idea applies to integrable singularities as well.
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Numerical Integration

® |Improper integrals:

® Example:
b cosT
dr
0o VT
o 1—72/2d N 2 COST
N T T
0 VT o VT
1 LY cosT
7 2t(1)/2 — 22 +

dr
5V o AT
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