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Lecture 16: 
ODE-IVP and Numerical Integration
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Quiz 1 Results
• Mean: 70.6

• Standard deviation: 11.0
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Recap

• Implicit methods for ODE-IVPs
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• Example:

• Use implicit Euler to solve:  

Recap

dx

dt

= �x, x(0) = x0

Give a closed form formula for the numerical solution
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• Example:

• Use implicit Euler to solve:  

• Let:

• Stability:

Recap

dx

dt

= �x, x(0) = x0

xk = x(k�t)

xk+1 = xk +�t�xk+1

xk+1 =
1

1��t�

xk

xk =

✓
1

1��t�

◆k

x0

|1��t�| � 1 ) (1��tRe�)2 + (�tIm�)2 � 1

�t�
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• Example:

• Use implicit Euler to solve:  

• Numerical solution:

• Exact solution:

• Stability and accuracy do not correlate!

Recap

dx

dt

= �x, x(0) = x0
xk+1 = xk +�t�xk+1

xk+1 =
1

1��t�

xk

xk =

✓
1

1��t�

◆k

x0

xk = x0e
k��t

�t�
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• Multistep methods utilize information over multiple time steps to 
approximate the solution of an ODE.

• These can be designed for higher accuracy, larger stability bounds or 
both.

• Example: Leapfrog method

• Approximate derivative with central difference:

Multistep Methods

1

2�t
(x(t+�t)� x(t��t)) = f(x(t), t)

dx

dt
= f(x(t), t)

x(tk+1) = x(tk�1) + 2�tf(x(tk), tk)

k � 1 k + 1
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• Local accuracy of the leap frog method:  

• Stability of the leap frog method:

Multistep Methods

dx

dt

= �x

xk+1 = xk�1 + 2�t�xk

✓
xk+1

xk

◆
=

✓
2�t� 1
1 0

◆✓
xk

xk�1

◆

✓
xk+1

xk

◆
= Ck

✓
x1

x0

◆

dx

dt
=

1

2�t
(x(tk+1)� x(tk�1)) +O((�t)2) = f(x(tk), tk)

x(tk+1) = x(tk�1) + 2�tf(x(tk), tk) +O((�t)3)
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• Local accuracy of the leap frog method:  

• Stability of the leap frog method:

Multistep Methods

dx

dt

= �x

xk+1 = xk�1 + 2�t�xk

✓
xk+1

xk

◆
= Ck

✓
x1

x0

◆

dx

dt
=

1
(x(tk+1)� x(tk 1)) +O((�t)2) = f(x(tk), t� k)

2�t

x(tk+1) = x(tk�1) + 2�tf(x(tk), tk) +O((�t)3)

C =

✓
2�t� 1
1 0

◆

What are the eigenvalues of this matrix?
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• Local accuracy of the leap frog method:  

• Stability of the leap frog method:

• Both eigenvalues of      must be bounded: 

Multistep Methods

dx

dt

= �x

xk+1 = xk�1 + 2�t�xk

C

|�t�±
p
(�t�)2 + 1|  1

|�t�± 1|  1 |�t�| ⌧ 1

consider when                   :

�t�
i

�i

dx 1
=

dt
(x(tk+1)� x(tk 1)) +O((�t)2) = f(x(tk), t� k)

2�t

x(tk+1) = x(tk�1) + 2�tf(x(tk), tk) +O((�t)3)

|�t�± 1|  1 |�t�| ⌧ 1
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• Exercise: 

• Should I use the leap frog method to integrate the equations of 
motion for a mass-spring system?

• If so, what time steps should I limit myself to?

• If not, what other integrator could I use?

Multistep Methods

m

d

2
x

dt

2
= �kx
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• Exercise: 

• Should I use the leap frog method to integrate the equations of 
motion for a mass-spring system?

• Transform to system of first order ODEs:

• Since eigenvalues are imaginary, leap frog is stable when:

Multistep Methods

d x

m =
dt

2
�kx

2

d

◆
=

✓
0 �k/m

1 0

◆✓
v

dt

✓
v

x x

◆

• k
Eigenvalues of matrix: � = i±

r

m

m
�t <

r

k



13

• Multistep methods can be implicit as well such as the backward 
differentiation formulas or Adams-Moulton integrators.

• Example: Backwards differentiation

• Second order accurate.

• How would you identify the stability bounds?

Multistep Methods

4 1 2
xk+1 = xk

3
� xk

3
�1 + �tf(xk+1, tk+1)

3
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• Consider the definite integral:

• We can define a variable:

• which, if         is continuous, satisfies the differential equation:

• Thus, a definite n be 
determined using methods for ODE-IVPs to compute:

Numerical Integration
Z tf

f(⌧)d⌧
t0

x(t) = f(⌧)d⌧
t0

Z t

d
x(t) = f(⌧), x(t0) = 0

dt
 integral of a known, continuous function ca

f(t)

x(tf )
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• Consider the definite integral:

• If the discontinuities in        are known, then ODE-IVP solvers can be 
used in the domain between the discontinuities too! 

• If the discontinuities in        are unknown, then Monte-Carlo methods 
(discussed later are a better option).

• This approach is efficient with adaptive time stepping methods because 
an appropriate spacing between points can be chosen when        
changes more or less rapidly with

• For multi-dimensional integrals, this approach is not as straightforward, 
however.

Numerical Integration

Z tf

f(⌧)d⌧
t0

f(t)

f(t)

f(t)
t
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Z tk 1
Pk(⌧)d⌧ =

tk�1
2
(f(tk) + f(tk�1)) (tk � tk�1)

1
Pk(⌧) = f(tk�1) + (f(tk)

tk � tk�1
� f(tk�1)) (⌧ � tk�1)

• One alternative is integration by polynomial interpolation:

• where             is a polynomial approximation of            in the 
domain           

• If the size of the domains of integration and the order of the 
polynomial interpolant can be used to control the accuracy of the 
integration.

•

Numerical Integration

Z t

Example: quadratic interpolation – Simpson’s rule:

f

t0

f(⌧)d⌧ =
NX

k=1

Z tk

tk�1

f(⌧)d⌧ ⇡
NX

k=1

Z tk

tk�1

Pk(⌧)d⌧

Pk(⌧) f(⌧)

⌧ 2 [tk�1, tk]
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• One alternative is integration by polynomial interpolation:

• where             is a polynomial approximation of            in the 
domain           

• If the size of the domains of integration and the order of the 
polynomial interpolant can be used to control the accuracy of the 
integration.

• Example: quadratic interpolation – Simpson’s rule:

Numerical Integration

Z tf

f(
t0

⌧)d⌧ =
NX t

k=1

Z
k

f(⌧
tk�1

)d⌧ ⇡
NX

k=1

Z tk

tk�1

Pk(⌧)d⌧

Pk(⌧) f(⌧)

⌧ 2 [tk�1, tk]

Z tk

tk�1

Pk(⌧)d⌧ =
1

6
(f(tk) + 4f((tk + tk�1)/2) + f(tk�1)) (tk � tk�1)
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• Multidimensional integration:

• Of the sort:

• For any number of dimensions larger than 3, this is best handled 
with Monte Carlo methods

• For dimensions less than 3, this integration can be done with 
polynomial interpolation.

• Fit the function to a polynomial of a prescribed degree within 
small regions of the domain of integration.

• Sum integrals over the polynomial fits in each fit region.

• This fails with higher dimensions because the number of fit 
regions grows exponentially with dimension.

• Example:

Numerical Integration

Z yU

L

Z zU

f(y, z)dydz
zLy
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• Improper integrals:

• Of the sort:

• Can be split into two domains of integration

Numerical Integration

Z 1
f(⌧)d⌧

t0

Z 1 Z 1
f( )d⌧ =

Z tf

⌧ f(⌧)d⌧ + f(⌧)d⌧
t t t

•
0 0 f

The first integral can be handled with ODE-IVP methods or 
polynomial interpolation

• The second must be handled separately through either: 

• transformation onto a finite domain

• or substitution of an asymptotic approximation

• This same idea applies to integrable singularities as well.
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• Improper integrals:

• Example:

Numerical Integration

Z tf
cos ⌧

0

p d⌧
⌧

⇡
Z t0

1� ⌧2/2 tf
cos ⌧p d⌧ +

0 ⌧

Z

t0

p d⌧
⌧

⇡ 1/2 1

tf

2t0 � 5/2 cos ⌧
t + d⌧

5

0

Z

t0

p
⌧
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