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Recap

® Homotopy and Bifurcation






Optimization

® Problems of the sort:
min f(x arg min f(x
min f(x) g min f(x)
e f(x):objective function, cost function, energy

® “metric to compare alternatives”

® x:“design alternatives”
® [):feasible set

® Maximization of f(x) is just minimization of — f(x)



Optimization




Optimization
o Goalfindx* € D: f(x") < f(x) Vxe€D

® X is not necessarily unique. There could be more
than one x™in D.

® Convexity: a function is convex if the line connecting any

two points above the function is also above the function:
A

convexX

/\ /\ non-convex

v
® Convex functions have a single, global minimum

® Most algorithms are characterized in terms of their
ability to find the global minimum of convex
functions.

® Non-convex function may have global or local minima



Optimization
® Examples:

® Find the value of & that minimizes

flx)=a2"+2z+1

e Find the value of x € |0, 1] that minimizes
flz) =2 +2x+1




Optimization

® Examples: linear programs

Premium and regular ice cream are sold for $5/gallon
and $3.5/gallon respectively.

Premium ice cream is 30% air by volume while regular
ice cream is 50% air by volume.

We can produce X gallons of premium andY gallons of
regular ice cream all at the same cost, $|/gallon.

What fraction of milk processed should go toward
premium versus regular ice cream?



Optimization

e x* c Dis alocal minimum of

e if 3 €>0: f(x") < f(x), Vxe& DN B(x")

® Global minima are also local minima

e If f(X)is convex in D then a local minimum is the
global minimum in D).

e If [ isa closed set, the problem of finding the minimum
is called constrained optimization.

e If D is an open set: R''the problem of finding the
minimum is called unconstrained optimization



Unconstrained Optimization

e Optimality criteria: \ |
® How do | check for local minima!? 4A\//\ /\\/L>

e Assume f(X)is twice differentiable, then:

1
fx+d) = f(x) +g(x) d+ d H(x)d + ...
Of 0°f
here: g, = — . —
® where: g;(x) . H;j;(x) 0101 ;
o As Hde — 0
fx+d) - f(x)=g d f<x>f(x+d)

o If g'd > 0,then f(x+d) > f(x) f(x—d)

® But, replace d with —d,and the converse is true

® Therefore, | have a critical point when: g = Vf(x) =0 |,



Unconstrained Optimization

® Solving unconstrained optimization problems is the same
as solving the system of nonlinear equations:

g=Vf(x)=0

® Except, we want to ensure that we only find the roots
associated with local minima in  f(x)

f(x+d) = f(x)+ g>)<i + %dTH(x)d +...

® |f the eigenvalues of the Hessian are positive, we can
be sure that f(x) is a minimum. Why?

® For a minimum, the eigenvalues must be non-negative

® How do we craft an algorithm that only finds minima?



Unconstrained Optimization

® Exam

e (Ca
Ca

dles:

culate the gradient. Where is the critical point?

culate the Hessian. Is the critical point a minimum!?

f(x) = x{ + x5
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Unconstrained Optimization

® Method of steepest decent:

® Solve the equation: g(x) = V f(x) = 0, iteratively
by taking steps in a direction that decreases f(x)

Xi+1 = X; + a;d;
e with a; > 0 and g(X@')TdZ’ < 0
® This ensures that d; is a descent direction:
f(xi + aid;) = f(x;) + aig(xi) di + . ..
® Which descent direction should | choose!
® One option: maximize —g(xi)Tdi
o CSinequality: —g(x;)" d; < ||g(x:)ll2/ldif2

e Solution:letd; = —g(Xi)
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Unconstrained Optimization

® Method of steepest decent:
® Example: f(x) = x7 + 3

e Contours for the function:

Xi4+1 — X — Oéz'g(Xz')

Is there a best value of «; to

use with this function?
" -" xl
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Unconstrained Optimization

® Method of steepest decent:
® Direction of steepest descent: d; = —g(x;)
® |terative solution: X; 11 = X; — ;g(X;)

® For small, positive values of «;, the iterates
continue to reduce f(x) until g(x) = 0

® The iterative method converges to local minima and
potentially saddle points. Need to check the
Hessian still to be sure of minima.

® How do | choose values for «; !

® |deally, we pick the «; that leads to the smallest
value of f(X;+1), but this is its own optimization.

® We can approximate the solution with a line
search like in damped Newton-Raphson.
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Unconstrained Optimization

® Method of steepest decent:

® Example: f(x) = x% + 10:13%

® Contours for the function:

=

Draw the path given by small ¢;

® The choice of «; is critical!

® TJoo small and the convergence is slow
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Unconstrained Optimization

® Method of steepest decent:

® Example: f(x) = x% + 10:13%

® Contours for the function:

=

Draw the path given by larger o;

® The choice of «; is critical!

® TJoo big and convergence is erratic
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Unconstrained Optimization

® Method of steepest decent:

® Example: f(x) = a:% + 10:13%

® Contours for the function:
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Unconstrained Optimization

® Method of steepest decent:
® Estimating an optimal ¢;:

Xi4+1 — X4 — Oéz'g(Xz')

® Use a Taylor expansion:

1

f(xiv1) = f(xi) — aig(xi)" g(xi) + 504@2g(Xz')TH(Xi)g(Xz') +...

® This is quadratic in ¢/;, so find the minimum:

g(x;)" g(x;)

g(x;) T H(x;)g(x:)

® This can serve as a good starting point for a
backtracking line search.

v, —
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Unconstrained Optimization

® Method of steepest decent:

® Example: f(x) = a:% + 10:133

® Contours for the function:
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Unconstrained Optimization

® Method of steepest decent:

e Example: log f(x) = x7 + 1023

® Contours for the function:
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