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Quiz 1 Results
• Mean: 77

Standard deviation: 12
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Recap

• Numerical integration

• Implicit methods for ODE-IVPs
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• Improper integrals:

• Of the sort:

• Can be split into two domains of integration

• The first integral can be handled with ODE-IVP methods 
or polynomial interpolation

• The second must be handled separately through either: 

• transformation onto a finite domain

• or substitution of an asymptotic approximation

• This same idea applies to integrable singularities as well.
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• Improper integrals:

• Example:

Recap
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• Example:

• Use implicit Euler to solve:  

Recap

dx

dt

= �x, x(0) = x0

Give a closed form formula for the numerical solution



Recap
• Example:

• Use implicit Euler to solve:  

dx

• Let:

• Stability:
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Recap
• Example:

• Use implicit Euler to solve:  

dx

• Numerical solution:

• Exact solution:

• Stability and accuracy do not correlate! 8
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Differential Algebraic Equations
• Problems of the sort: 

f

✓
dx

x,

• Called “well-posed” when 
x, f 2 R

N

• Example: stirred tank 1
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Differential Algebraic Equations
• Problems of the sort: 

f

✓
dx

x,

• Called “well-posed” when 
x, f 2 R

N

• Example: stirred tank 1
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Differential Algebraic Equations
• Problems of the sort: 

• Called “well-posed” when 
x,

• Example: stirred tank 2
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• Common in dynamic simulations involving conservation, 
constraints, or equilibria.

• Conservation of total:

• energy

• mass

• momentum

• particle number

• atomic species

• charge

• Models of reaction networks utilizing the pseudo-steady-
state approximation.

• Models of control neglecting controller dynamics.

Differential Algebraic Equations
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• Problems of the sort: 

•      is called the “mass matrix”

• Stirred tank example 1:

• Semi-explicit form:

• When mass matrix is full rank these problems can be solved by 
applying typical ODE-IVP techniques to:

Semi-explicit DAEs
M
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Semi-explicit DAEs
• Write stirred tank example 2 in semi-explicit form:
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c1(t) c2(t) dc2
dt
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Q
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• Problems of the sort: 

•      is called the “mass matrix”

• Many semi-explicit DAEs can be written in the simplified form:

• where

•      are called the differential states

•      are called the algebraic states

Semi-explicit DAEs
M

dx

dt
= f(x, t), x(0) = x0

M

dx

dt
= f(x,y, t)

0 = g(x,y, t)

x

y

x(0) = x0

0 = g(x0,y(0), t)



Fully implicit DAEs
• Example: mass-spring system

• Conservation of energy: 
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• Many problems contain non-linearities with respect to 
differentials of the state variables.

• If             is full rank, then the DAE can be represented as an 
equivalent ODE:

Fully implicit DAEs
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@f

@ẋ
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Fully implicit DAEs
• Example: mass-spring system

• Conservation of energy: 
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Fully implicit DAEs
• Example: molecular dynamics

• Conservation of energy: 

• Simplectic integrators used to integrate equations of motion 
while exerting control over error in the total energy. 
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• Consider the semi-explicit DAE:

• Consider applying the forward Euler approximation:

• Determining the algebraic states always requires 
solution of a nonlinear equation.  

• DAE simulation methods are inherently implicit.

Numerical Simulation of DAEs

dx

dt
= f(x,y, t)

0 = g(x,y, t)

x(0) = x0

x(t+�t)� x(t) = �tf(x(t),y(t), t)

0 = g(x(t),y(t), t)
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• Consider the fully implicit DAE:

• No way in general to avoid solving systems of nonlinear 
equations.   

• Backward difference approximations for     are substituted 
and time marching solutions determined. 

• Example, backward Euler approximation:

Numerical Simulation of DAEs

f(x, ẋ, t) = 0, x(0) = x0

ẋ
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• Consider the semi-explicit DAE:

• No way in general to avoid solving systems of nonlinear 
equations.   

• Backward difference approximations for     are substituted 
and time marching solutions determined. 

• Example, backward Euler approximation:

Numerical Simulation of DAEs

ẋ
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dx

dt
= f(x,y, t)

x(0) = x0

0 = g(x,y, t)

0 =
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• How suitable are such approaches?

• Consider stirred tank example 1:

Numerical Simulation of DAEs

dc2
dt

=
Q

V
(c1(t)� c2(t))

c1(t) = �(t)

c1(tk) = �(tk)

c2(tk) =
1
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• How suitable are such approaches?

• Consider stirred tank example 2:

Numerical Simulation of DAEs

dc2
dt

=
Q

V
(c1(t)� c2(t))

c2(t) = �(t)

c2(tk) = �(tk)

c1(tk) = c2(tk) +
V
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• How suitable are such approaches?

• Consider the system of DAEs:

Numerical Simulation of DAEs

What is the exact solution?
Apply backward Euler method:

ċ2 = c1(t)

ċ3 = c2(t)

0 = c3(t)� �(t)

c3(tk) = �(tk)

c2(tk) =
c3(tk)� c3(tk�1)

tk � tk�1

c1(tk) =
c2(tk)� c2(tk�1)

tk � tk�1

+O(tk � tk�1)

+O(1) !
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