10.34: Numerical Methods

Applied to
Chemical Engineering

Lecture 18:
Differential Algebraic Equations
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Recap

® Numerical integration

® Implicit methods for ODE-IVPs



Recap

Improper integrals:

® Of the sort:; o0
/ f(7)dr

to

® Can be split into two domains of integration

/: £(7)dr = /ttf £(7)dr + /t :O £(r)dr

® The first integral can be handled with ODE-IVP methods
or polynomial interpolation

® The second must be handled separately through either:
® transformation onto a finite domain
® or substitution of an asymptotic approximation

® This same idea applies to integrable singularities as well.
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Recap

® |mproper integrals:

® Example:
' cosT
N dr
0 T
o 1—72/2d N 2 COST
- T T
0 VT te VT
1 ¥ cosT
~ 2t(1)/2 — )2 +

dr
50 W AT



Recap

® Example:

® Use implicit Euler to solve:
dx
dat

Give a closed form formula for the numerical solution

= \z,x(0) = xg



Recap

® Example:

® Use implicit Euler to solve:
dx

= Az, x(0) = xg

o let xp = x(kAt)
Thtl = Tk + At)\xkﬂ

|
TEHL = T AN At
1 k
xk:(l—AtA) 0 i ’

® Stability:
11— AtA]| > 1= (1 — AtRe))? + (AtImA)* > 1
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Recap

® Example:

® Use implicit Euler to solve:
dx

= Az, x(0) = xg

® Numerical solution:

1 k
k= (1 —AtA) "0

® Exact solution:

At

2 = pgef At

® Stability and accuracy do not correlate!



Differential Algebraic Equations

® Problems of the sort: f (X, CZZ—};, t) =0, x(0) = xg

e Called “well-posed” when x,f € RY

® Example:stirred tank | dco @,
e1(t) co (1) dt ~ V

Q {
i / W(t/)e_(Q/V)(t_t/)dt/
V' Jo
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Differential Algebraic Equations

dx

® Problems of the sort: f (X, g ,t) =0, x(0) = xg

e Called “well-posed” when x,f € RY

® Example:stirred tank |




Differential Algebraic Equations

d
—X,t> — 0, x(0) = %o

® Problems of the sort: f (X, g

e Called “well-posed” when x,f € RY

® Example:stirred tank 2 Co
T e T -a)
I—’ s(t) = (1)
_l c1(t) = co, c2(0) =~(0)
Solution:




Differential Algebraic Equations

® Common in dynamic simulations involving conservation,
constraints, or equilibria.

e Conservation of total:
® energy
® mass
® momentum
® particle number
® atomic species
® charge

® Models of reaction networks utilizing the pseudo-steady-
state approximation.

® Models of control neglecting controller dynamics.
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Semi-explicit DAEs
dx

® Problems of the sort: ME = f(x,1), x(0) = xg

® M is called the “mass matrix”

® Stirred tank example I:

( 2 — & (er(t) — ca(t) >

c1(t) — (1)

® Semi-explicit form:
Q& _Q
1 O ic — V V C _|_ O
0 0 / dt -1 0 v(t)

® When mass matrix is full rank these problems can be solved by

applying typical ODE-IVP techniques to:
dx

— =M f(x,t
dt (X7 )

0
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Semi-explicit DAEs
® Write stirred tank example 2 in semi-explicit form:

c1(t) co(t) des Q@
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Semi-explicit DAEs
dx

® Problems of the sort: ME = f(x,1), x(0) = xg

® M is called the “mass matrix”

® Many semi-explicit DAEs can be written in the simplified form:

dx

= f(x,y,1 x(0) = xo
0=g(x,y,t?) 0 = g(%0,¥(0),%)
® where

® ¥ are called the differential states

® vy are called the algebraic states
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Fully implicit DAEs

k
® Example: mass-spring system ﬂ—/V\/W m
—x

1
e Conservation of energy: £ = —m(x ) + — kx

2

1 1
flz,z,t) = §m(x)2 + 51@:132 — E=0

has a solution:

r = a cos(wt)

1
§ma2w2 sin®(wt) + = ka cos*(wt) = E

o= \ami



Fully implicit DAEs

® Many problems contain non-linearities with respect to
differentials of the state variables. f (x,%,%) = 0, x(0) = xg

of
o If Ox
equiva

df

dx
dt

I8 full rank, then the DAE can be represented as an

éht ODE:

of Of

— dx -

Ox bx = Ox
of

%

)

t.%

i

dx

t%

of

dx

ot

X, X

of

dt

ot

dt = 0

)O
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Fully implicit DAEs

k
® Example: mass-spring system ﬂ—/V\/W m
—x

1

® Conservation of energy: F/ = —m(x

flo,@,1) =

of

%:

2
1

transform to ODE

. 9f

" O = R,

(2)7

of
"ot

K
+2£1:

1

=0
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Fully implicit DAEs

® Example: molecular dynamics

1

e Conservation of energy: [ = §mHXH§

1
f (%, 1) = Smll%[l2 + V(x) - E
l

_of ., Jdf - af _
df = 5% tjxdx - t’kdx. o kadt—()
l %:mk

0=x-(mxX+ VV(x))

® Simplectic integrators used to integrate equations of motion
while exerting control over error in the total energy.
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Numerical Simulation of DAEs

® Consider the semi-explicit DAE:

dx
o= f(x,y,1) x(0) = xg
0=g(x,y,t)

® Consider applying the forward Euler approximation:
x(t + At) — x(t) = Atf(x(t), y(t), 1)
0 =g(x(t),y(t),1)

® Determining the algebraic states always requires
solution of a nonlinear equation.

® DAE simulation methods are inherently implicit.
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Numerical Simulation of DAEs

® Consider the fully implicit DAE:
f(x,x,t) =0, x(0) = xq

® No way in general to avoid solving systems of nonlinear
equations.

® Backward difference approximations for X are substituted
and time marching solutions determined.

® Example, backward Euler approximation:

tr) — X(Tr_
k) = X(tk 1),tk> =0 for:x(tx)
b — Tp—1

solve: f (x(tk), X

t — X (1
solve: f (X(tk_|_1), X( k+1> X( k),tk+1) =0 for: X(tk_|_1)
ter1 — Tk
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Numerical Simulation of DAEs

® Consider the semi-explicit DAE:

dx
— =f(x,y,t x(0) =x
= = f(x,y,1 (0) = o
0=g(x,y,?)
® No way in general to avoid solving systems of nonlinear
equations.

® Backward difference approximations for X are substituted
and time marching solutions determined.

® Example, backward Euler approximation:

ﬂfﬁijﬁ_” £(x(tk), y(tr) tk) for: x(t,)

0 = g(x(tk), y(tx), tx)

solve: () =
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Numerical Simulation of DAEs

® How suitable are such approaches!?

® Consider stirred tank example I:

dca @
%2~ D (e1(0) ~ eatt)
c1(t) = (1)

Apply backward Euler method:
c1(tk) = v(tk)
1 Q

ca(ty) = = %(tk ) (CQ(tk—l) + V(tk — tk—1)01(tk)>
O((tk — tr—1)")

23



Numerical Simulation of DAEs

® How suitable are such approaches!?

® Consider stirred tank example 2:

dca @
 { CURI0)
ca(t) = (1)

Apply backward Euler method:
Ca(tr) = v (tk)

_ . Vo (ealty) — caltyp—1)
c1(tr) = ca(tr) + 0 (

b — te—1

) 0t~ i)
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Numerical Simulation of DAEs

® How suitable are such approaches!?

® Consider the system of DAEs:

ég — (1 (t)
ég — (C9 (t)
0=cs(t) — (1)

What is the exact solution?
Apply backward Euler method:

c3(tr) = v(t)

ca(tr) — calte-1) O(tr — tp—1)

£ —
2 k) b — tp—1 |

c2(tr) — ca(th—1)
b — Tk—1

|

O
~~

p—
~—

Cl(tk)
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