
Lecture 13: 
ODE-IVP and Numerical Integration

10.34: Numerical Methods 
Applied to  

Chemical Engineering
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Recap

• Constrained optimization

• Method of Lagrange multipliers

• Interior point methods
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• Example:

• minimize:  

• subject to: 

• Can you solve this problem?
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• Most physical processes are dynamic in nature.  This means 
that  first principles models describing those processes can be 
depicted as differential equations:

•        is often called the state vector and is the set of 
dynamic variables for which we want to solve. 

•      is time

•        is a time dependent input that we specify

•     is a vector of time independent parameters.

•     is the initial value of the state vector at
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• Usually, the solution we are interested in is values of the state 
vector within some time domain:

• The initial value problem can be rewritten as:

• By convention, the initial time,     , is often set to be zero.

• Since                , can be an arbitrary nonlinear function of the 
state vector, a closed form, analytical solution rarely exists.

• Numerically, we will solve this equation by finding the state 
vector at a finite number of points within the time domain.

• We will need to characterize the accuracy and stability of 
solution methods to these problems.
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• Higher order differential equations can always be rewritten as 
systems of first order equations 

• Consider the force balance on a driven mass-spring-damper: 

• Let: 

• Then:

• And:
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• Higher order differential equations can always be rewritten as 
systems of first order equations 

• Consider the force balance on a driven mass-spring-damper: 

• Collecting a state vector,                , gives:
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2 Existence and Uniqueness

The existence of a unique solution to (3) follows if f is Lipschitz continuous. Precisely speaking, a
function f(x, t) is said to be Lipschitz continuous in x over some domain of x and t if there exists
some constant m so that

kf(x, t)� f(z, t)k  mkx� zk (11)

for all x and z in the domain, for some vector norm k · k. Lipschitz continuity is slightly stronger
than continuity, which only requires that

lim
x!z

kf(x, t)� f(z, t)k ! 0. (12)

The function is uniformly Lipschitz continuous over some time period if there exists a single constant
m that applied for all x and z and all time t in the time period. The mean value theorem can
be applied to show that uniform Lipschitz continuity of f(x, t) is implied if f(x, t) is continuously
di↵erentiable with respect to x and the derivative @

@x f(x, t) has bounded norm over the domain of
x [1].1

A unique solution (3) exists for all initial conditions x(t0) within the domain and all time
t 2 [t0, tf ] if f(x, t) is uniformly Lipschitz continuous in x over the time period.

3 Finite Di↵erence Approximations of Derivatives

ODEs are solved by replacing the derivatives with finite di↵erence approximations to generate
a system of algebraic equations. To introduce finite di↵erences, consider the simplest forward
di↵erence approximation
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(x(t+�t)� x(t)), (13)

the backward di↵erence approximation
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and central di↵erence approximation
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dt

x(t) ⇡ 1

2�t

(x(t+�t)� x(t��t)), (15)

where �t is a small positive scalar. The first two approximations are one-sided and first-order
accurate, meaning that the size of the error is proportional to �t, and the third approximation is
two-sided and second-order accurate, which means that the error is proportional to (�t)2.
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• Example:

• Use separation of variables to solve:

• Does a solution exist for all times?  Is the solution unique?

Existence and Uniqueness

dx

dt

= x

2

x(0) = x0

dx

x

2
= dt )

✓
1

x0
� 1

x(t)

◆
= t ) x(t) =

1
1
x0

� t

8



• Example:

• Use separation of variables to solve:

• Does a solution exist for all times?  Is the solution unique?

Existence and Uniqueness
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• A unique solution exists if             , is Lipschitz continuous.

• Lipschitz continuity within some domain      means that:

• This is stronger than regular continuity:

• For existence and uniqueness to be guaranteed,            , needs 
to be Lipschitz continuous over the whole domain of      and 
in the time domain of interest.       

• Examples:    

• Is                    continuous?   Is it uniformly Lipschitz cont.? 

• Is                    continuous?   Is it uniformly Lipschitz cont.? 

Existence and Uniqueness
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• One way to solve differential equations numerical is to 
approximate the derivatives and turn the differential equation 
into a sequence of algebraic equations.

• Finite differences are a typical method for this 
approximation:

• Forward difference:

• Backward difference:

• Central difference:
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• One way to solve differential equations numerical is to 
approximate the derivatives and turn the differential equation 
into a sequence of algebraic equations.

• Finite differences are a typical method for this 
approximation:

• Forward difference:

• Backward difference:

• Central difference:
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The order of accuracy of these expressions can be derived analytically by expanding x(t+�t)
and x(t��t) in Taylor series:
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The above expressions confirm that the above forward and backward di↵erence approximations are
first-order accurate and the central di↵erence approximation is second-order accurate, that is, the
error

E(�t) / (�t)p, (28)

where the order of accuracy p is equal to 1, 1, and 2, respectively.
Finite di↵erence approximations for various order of derivatives and orders of accuracy are

summarized in handbooks on numerical methods such as [3, 4]. Especially popular is the second-
order accurate central di↵erence approximation of the second-order derivative
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order accurate central di↵erence approximation of the second-order derivative
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• The order of accuracy of a finite difference approximation is 
given by the leading order error in the Taylor expansion.

• For example:

• is said to be a first order accurate approximation.

• If the error in the approximation is:                           , then 
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Finite Differences

E(�t) ⇠ (�t)p

log |E(�t)| ⇡ log c+ p log�t

The order of accuracy of these expressions can be derived analytically by expanding x(t+�t)
and x(t��t) in Taylor series:

x(t+�t) = x(t) +�t

d

dt

x(t) +
(�t)2

2!

d

2

dt

2
x(t) +

(�t)3

3!

d

3

dt

3
x(t) + O((�t)4), (16)

x(t��t) = x(t)��t

d

dt

x(t) +
(�t)2

2!

d

2

dt

2
x(t)� (�t)3

3!

d

3

dt

3
x(t) + O((�t)4), (17)

which are valid provided that x is su�ciently smooth. Insertion of these Taylor series into the finite
di↵erence approximations (13)–(15) gives, for the forward di↵erence approximation,

d

dt

x(t) ⇡ 1

�t

(x(t+�t)� x(t)) (18)

=
1

�t

✓
x(t) +�t

d

dt

x(t) +
(�t)2

2!

d

2

dt

2
x(t) +

(�t)3

3!

d

3

dt

3
x(t) + O((�t)4)� x(t)

◆
(19)

=
d

dt

x(t) +
�t

2

d

2

dt

2
x(t) +

(�t)2

6

d

3

dt

3
x(t) + O((�t)3), (20)

for the backward di↵erence approximation,

d

dt

x(t) ⇡ 1

�t

(x(t)� x(t��t)) (21)

=
1

�t

✓
x(t)�

✓
x(t)��t

d

dt

x(t) +
(�t)2

2!

d

2

dt

2
x(t)� (�t)3

3!

d

3

dt

3
x(t) + O((�t)4)

◆◆
(22)

=
d

dt

x(t)� �t

2

d

2

dt

2
x(t) +

(�t)2

6

d

3

dt

3
x(t) + O((�t)3), (23)

and for the central di↵erence approximation,

d

dt

x(t) ⇡ 1

2�t

(x(t+�t)� x(t��t)) (24)

=
1

2�t

✓
x(t) +�t

d

dt

x(t) +
(�t)2

2

d

2

dt

2
x(t) +

(�t)3

3!

d

3

dt

3
x(t) + O((�t)4) (25)

�
✓
x(t)��t

d

dt

x(t) +
(�t)2

2!

d

2

dt

2
x(t)� (�t)3

3!

d

3

dt

3
x(t) + O((�t)4)

◆◆
(26)

=
d

dt

x(t) +
(�t)2

6

d

3

dt

3
x(t) + O((�t)3). (27)

The above expressions confirm that the above forward and backward di↵erence approximations are
first-order accurate and the central di↵erence approximation is second-order accurate, that is, the
error

E(�t) / (�t)p, (28)

where the order of accuracy p is equal to 1, 1, and 2, respectively.
Finite di↵erence approximations for various order of derivatives and orders of accuracy are

summarized in handbooks on numerical methods such as [3, 4]. Especially popular is the second-
order accurate central di↵erence approximation of the second-order derivative

d

2

dt

2
x(t) ⇡ 1

(�t)2
(x(t+�t)� 2x(t) + x(t��t)). (29)

3

14



• Explicit (or Forward) Euler method:

• Approximate the derivative with forward differences:

• This gives a sequence of approximations for the solution at 
different time points:

Explicit Methods for IVPs

As discussed in Section 1, finite di↵erence approximations are not really needed for higher order
derivatives since they can always be written in terms of first-order derivatives by defining addi-
tional state variables. Deciding whether to insert finite di↵erence approximations for higher order
derivatives into an IVP directly or first rewriting the ODEs in terms of only first-order derviatives
is a matter of convenience. Generic software for the numerical solution and dynamic analysis of
ODEs almost always assumes that the model contains only first-order derivatives, so most users
will take this route rather than write their own ODE simulation code. If the full ODE simulation
code is being written from scratch for a system whose first-principles model naturally has higher
order derivatives, such as in the mass-spring-damper example, then it is common to insert finite
di↵erence approximations directly in place of the higher order derivatives.

Methods for deriving finite di↵erence approximations are described in textbooks on numerical
methods, which will not be covered here since any approximation that you would interested in
applying can be looked up in the tables.

A simple way to numerically evaluate the error in any approximation is to plot the numerical
error versus the discretization size:

E(�t) ⇡ c(�t)p (30)

ln |E(�t)| ⇡ ln c+ p ln�t (31)

where p is the order of accuracy and c is a constant. The slope of the error versus �t on a log-log
plot is a line with slope equal to the order of accuracy, which is a very good validation test for the
correctness of the implementation of a numerical algorithm.

4 Explicit Methods for the Simulation of IVPs

As mentioned in Section 3, IVPs are simulated by inserting finite di↵erence approximations of the
derivatives and solving the resulting set of algebraic equations.

4.1 Explicit Euler Method

The simplest numerical algorithm for solving an IVP is to insert the forward di↵erence approxima-
tion (13) into the ODE (3) to give

d

x(t) = f(x(t), t)
dt

1
(x(t+�t)� x(t)) ⇡ f(x(t), t)

�t

x(t+�t) x(t) + (�t)f(x(t), t),⇡

x(t0) = x0

x(t0 +�t) ⇡ x(t0) + (�t)f(x(t0), t0) = x0 + (�t)f(x0, t0)

x(t0 + 2�t) ⇡ x(t0 +�t) + (�t)f(x(t0 +�t), t0 +�t)

x(t0 + 3�t) ⇡ x(t0 + 2�t) + (�t)f(x(t0 + 2�t), t0 + 2�t)

...

x(t0 + (k + 1)�t) ⇡ x(t0 + k�t) + (�t)f(x(t0 + k�t), t0 + k�t)

...

These equations have implicitly employed a mesh along the time axis, and implicitly assumed that
the �t is the same between each time step (removal of this assumption is made later). The notation
can be simplified by defining tk = t0 + k�t, with integer k = 0, 1, 2, . . . ,

x(t0) = x0 (40)

x(t1) ⇡ x(t0) + (�t)f(x(t0), t0) (41)

x(t2) ⇡ x(t1) + (�t)f(x(t1), t1) (42)

x(t3) ⇡ x(t2) + (�t)f(x(t2), t2) (43)

...

x(tk+1) ⇡ x(tk) + (�t)f(x(tk), tk) (44)

...

This algorithm is a time-marching method, as each iteration produces the next state based only
on past and current values of the state. The numerical algorithm is said to be explicit because the
algebraic equations can be solved explicitly, that is, without resorting to iterative methods. Put
simply, the resulting set of algebraic equations can be solved at each time step without requiring
the simultaneous solution of coupled algebraic equations.

The explicit Euler method is first-order accurate, which is a result of using a first-order accu-
rate approximation for the derivative in the ODE. Higher order explicit methods are obtained by
inserting forward di↵erence approximations of higher order accuracy.

Runge-Kutta is a class of popular higher order methods that compute estimates of the states
at time points in between the time points of interest. For example, a second-order explicit Runge-
Kutta is

x(t+�t/2) = x(t) +
�t

2
f(x(t), t) (45)

x(t+�t) = x(t) + (�t)f(x(t+�t/2), t+�t/2). (46)

The first equation estimates the state at the midpoint by Euler’s method, which is used to estimate
the slope over the entire time interval. A drawback of Runge-Kutta methods is their requirement
of multiple function evaluations within each time interval. The function evaluation is usually the
most expensive step in solving an IVP, so Runge-Kutta methods are rarely used in the simulation
of IVPs in which computational considerations are important.
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• Explicit Euler method:

• Approximate the derivative with forward differences:

• This gives a sequence of approximations for the solution at 
different time points:

Explicit Methods for IVPs

As discussed in Section 1, finite di↵erence approximations are not really needed for higher order
derivatives since they can always be written in terms of first-order derivatives by defining addi-
tional state variables. Deciding whether to insert finite di↵erence approximations for higher order
derivatives into an IVP directly or first rewriting the ODEs in terms of only first-order derviatives
is a matter of convenience. Generic software for the numerical solution and dynamic analysis of
ODEs almost always assumes that the model contains only first-order derivatives, so most users
will take this route rather than write their own ODE simulation code. If the full ODE simulation
code is being written from scratch for a system whose first-principles model naturally has higher
order derivatives, such as in the mass-spring-damper example, then it is common to insert finite
di↵erence approximations directly in place of the higher order derivatives.

Methods for deriving finite di↵erence approximations are described in textbooks on numerical
methods, which will not be covered here since any approximation that you would interested in
applying can be looked up in the tables.

A simple way to numerically evaluate the error in any approximation is to plot the numerical
error versus the discretization size:

E(�t) ⇡ c(�t)p (30)

ln |E(�t)| ⇡ ln c+ p ln�t (31)

where p is the order of accuracy and c is a constant. The slope of the error versus �t on a log-log
plot is a line with slope equal to the order of accuracy, which is a very good validation test for the
correctness of the implementation of a numerical algorithm.

4 Explicit Methods for the Simulation of IVPs

As mentioned in Section 3, IVPs are simulated by inserting finite di↵erence approximations of the
derivatives and solving the resulting set of algebraic equations.

4.1 Explicit Euler Method

The simplest numerical algorithm for solving an IVP is to insert the forward di↵erence approxima-
tion (13) into the ODE (3) to give
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...

x(t0 + (k + 1)�t) ⇡ x(t0 + k�t) + (�t)f(x(t0 + k�t), t0 + k�t) (39)

...

These equations have implicitly employed a mesh along the time axis, and implicitly assumed that
the �t is the same between each time step (removal of this assumption is made later). The notation
can be simplified by defining tk = t0 + k�t, with integer k = 0, 1, 2, . . . ,

x(t0) = x0 (40)

x(t1) ⇡ x(t0) + (�t)f(x(t0), t0) (41)

x(t2) ⇡ x(t1) + (�t)f(x(t1), t1) (42)

x(t3) ⇡ x(t2) + (�t)f(x(t2), t2) (43)

...

x(tk+1) ⇡ x(tk) + (�t)f(x(tk), tk) (44)

...

This algorithm is a time-marching method, as each iteration produces the next state based only
on past and current values of the state. The numerical algorithm is said to be explicit because the
algebraic equations can be solved explicitly, that is, without resorting to iterative methods. Put
simply, the resulting set of algebraic equations can be solved at each time step without requiring
the simultaneous solution of coupled algebraic equations.

The explicit Euler method is first-order accurate, which is a result of using a first-order accu-
rate approximation for the derivative in the ODE. Higher order explicit methods are obtained by
inserting forward di↵erence approximations of higher order accuracy.

Runge-Kutta is a class of popular higher order methods that compute estimates of the states
at time points in between the time points of interest. For example, a second-order explicit Runge-
Kutta is

x(t+�t/2) = x(t) +
�t

2
f(x(t), t) (45)

x(t+�t) = x(t) + (�t)f(x(t+�t/2), t+�t/2). (46)

The first equation estimates the state at the midpoint by Euler’s method, which is used to estimate
the slope over the entire time interval. A drawback of Runge-Kutta methods is their requirement
of multiple function evaluations within each time interval. The function evaluation is usually the
most expensive step in solving an IVP, so Runge-Kutta methods are rarely used in the simulation
of IVPs in which computational considerations are important.
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• Explicit Euler method:

• Approximate the derivative with forward differences:

• This gives a sequence of approximations for the solution at 
different time points:

Explicit Methods for IVPs

As discussed in Section 1, finite di↵erence approximations are not really needed for higher order
derivatives since they can always be written in terms of first-order derivatives by defining addi-
tional state variables. Deciding whether to insert finite di↵erence approximations for higher order
derivatives into an IVP directly or first rewriting the ODEs in terms of only first-order derviatives
is a matter of convenience. Generic software for the numerical solution and dynamic analysis of
ODEs almost always assumes that the model contains only first-order derivatives, so most users
will take this route rather than write their own ODE simulation code. If the full ODE simulation
code is being written from scratch for a system whose first-principles model naturally has higher
order derivatives, such as in the mass-spring-damper example, then it is common to insert finite
di↵erence approximations directly in place of the higher order derivatives.

Methods for deriving finite di↵erence approximations are described in textbooks on numerical
methods, which will not be covered here since any approximation that you would interested in
applying can be looked up in the tables.

A simple way to numerically evaluate the error in any approximation is to plot the numerical
error versus the discretization size:
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where p is the order of accuracy and c is a constant. The slope of the error versus �t on a log-log
plot is a line with slope equal to the order of accuracy, which is a very good validation test for the
correctness of the implementation of a numerical algorithm.

4 Explicit Methods for the Simulation of IVPs

As mentioned in Section 3, IVPs are simulated by inserting finite di↵erence approximations of the
derivatives and solving the resulting set of algebraic equations.

4.1 Explicit Euler Method

The simplest numerical algorithm for solving an IVP is to insert the forward di↵erence approxima-
tion (13) into the ODE (3) to give

d

dt

x(t) = f(x(t), t) (32)

1

�t

(x(t+�t)� x(t)) ⇡ f(x(t), t) (33)

x(t+�t) ⇡ x(t) + (�t)f(x(t), t), (34)

where �t is a positive number (presumably small). This recursion is called the explicit Euler
method or just simply the Euler method. Starting at time t = t0, the numerical estimates of x(t)
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are

x(t0) = x0 (35)

x(t0 +�t) ⇡ x(t0) + (�t)f(x(t0), t0) = x0 + (�t)f(x0, t0) (36)

x(t0 + 2�t) ⇡ x(t0 +�t) + (�t)f(x(t0 +�t), t0 +�t) (37)

x(t0 + 3�t) ⇡ x(t0 + 2�t) + (�t)f(x(t0 + 2�t), t0 + 2�t) (38)

...

x(t0 + (k + 1)�t) ⇡ x(t0 + k�t) + (�t)f(x(t0 + k�t), t0 + k�t) (39)

...

These equations have implicitly employed a mesh along the time axis, and implicitly assumed that
the �t is the same between each time step (removal of this assumption is made later). The notation
can be simplified by defining tk = t0 + k�t, with integer k = 0, 1, 2, . . . ,

x(t0) = x0 (40)

x(t1) ⇡ x(t0) + (�t)f(x(t0), t0) (41)

x(t2) ⇡ x(t1) + (�t)f(x(t1), t1) (42)

x(t3) ⇡ x(t2) + (�t)f(x(t2), t2) (43)

...

x(tk+1) ⇡ x(tk) + (�t)f(x(tk), tk) (44)

...

This algorithm is a time-marching method, as each iteration produces the next state based only
on past and current values of the state. The numerical algorithm is said to be explicit because the
algebraic equations can be solved explicitly, that is, without resorting to iterative methods. Put
simply, the resulting set of algebraic equations can be solved at each time step without requiring
the simultaneous solution of coupled algebraic equations.

The explicit Euler method is first-order accurate, which is a result of using a first-order accu-
rate approximation for the derivative in the ODE. Higher order explicit methods are obtained by
inserting forward di↵erence approximations of higher order accuracy.

Runge-Kutta is a class of popular higher order methods that compute estimates of the states
at time points in between the time points of interest. For example, a second-order explicit Runge-
Kutta is

x(t+�t/2) = x(t) +
�t

2
f(x(t), t) (45)

x(t+�t) = x(t) + (�t)f(x(t+�t/2), t+�t/2). (46)

The first equation estimates the state at the midpoint by Euler’s method, which is used to estimate
the slope over the entire time interval. A drawback of Runge-Kutta methods is their requirement
of multiple function evaluations within each time interval. The function evaluation is usually the
most expensive step in solving an IVP, so Runge-Kutta methods are rarely used in the simulation
of IVPs in which computational considerations are important.
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of IVPs in which computational considerations are important.
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Explicit Methods for IVPs
• Explicit Euler method:

f = @(x,t) % Does something

t0 = 0;
tf = 1;
dt = 0.01;

x0 = % Initial condition

t = [t0:dt:tf]
x = zeros( length( x0 ), length( t ) );

x( :, 1 ) = x0;

for i = 2:length( t )

x( :, i ) = x( :, i - 1 ) + dt * f( x( :, i - 1 ), t( i - 1 ) );

end;
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• Explicit methods are termed explicit because the algebraic 
approximation to the IVP does not require a complicated 
solution method.

• Higher order explicit methods can be derived by 
incorporating information about the solution at 
intermediate or past time points.

• There are innumerable different methods by which this can 
be done.  Some are more accurate, others are more stable, 
others still require fewer function evaluations. 

• Example: explicit Runge-Kutta method

• uses information at the midpoint of the step

• requires twice as many function evaluations

Explicit Methods for IVPs

are

x(t0) = x0 (35)

x(t0 +�t) ⇡ x(t0) + (�t)f(x(t0), t0) = x0 + (�t)f(x0, t0) (36)
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...
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...
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the �t is the same between each time step (removal of this assumption is made later). The notation
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x(t0) = x0 (40)

x(t1) ⇡ x(t0) + (�t)f(x(t0), t0) (41)

x(t2) ⇡ x(t1) + (�t)f(x(t1), t1) (42)

x(t3) ⇡ x(t2) + (�t)f(x(t2), t2) (43)

...

x(tk+1) ⇡ x(tk) + (�t)f(x(tk), tk) (44)

...

This algorithm is a time-marching method, as each iteration produces the next state based only
on past and current values of the state. The numerical algorithm is said to be explicit because the
algebraic equations can be solved explicitly, that is, without resorting to iterative methods. Put
simply, the resulting set of algebraic equations can be solved at each time step without requiring
the simultaneous solution of coupled algebraic equations.

The explicit Euler method is first-order accurate, which is a result of using a first-order accu-
rate approximation for the derivative in the ODE. Higher order explicit methods are obtained by
inserting forward di↵erence approximations of higher order accuracy.

Runge-Kutta is a class of popular higher order methods that compute estimates of the states
at time points in between the time points of interest. For example, a second-order explicit Runge-
Kutta is

x(t+�t/2) = x(t) +
�t

2
f(x(t), t) (45)

x(t+�t) = x(t) + (�t)f(x(t+�t/2), t+�t/2). (46)

The first equation estimates the state at the midpoint by Euler’s method, which is used to estimate
the slope over the entire time interval. A drawback of Runge-Kutta methods is their requirement
of multiple function evaluations within each time interval. The function evaluation is usually the
most expensive step in solving an IVP, so Runge-Kutta methods are rarely used in the simulation
of IVPs in which computational considerations are important.
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Explicit Methods for IVPs
• Example:

• Forward Euler:

• Midpoint:

y(t+�t) = y(t)��ty(t) = (1��t)y(t)

dy
=

dt
�y, y(0) = 1 y(t) = e�t

�t
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Explicit Methods for IVPs
• Example:

dy

dt
= �y, y(0) = 1 y(t) = e�t
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