10.34: Numerical Methods

Applied to
Chemical Engineering

Lecture |3:
ODE-IVP and Numerical Integration

Recap

® Constrained optimization
® Method of Lagrange multipliers

® |nterior point methods

Recap

® Example:
® minimize: exp(—x% — x%)
® subjectto: 2% + x5 — 1 =0

® Can you solve this problem!?

.-
V- AVe —2x16_ ;_ z 211 A
. = | —2x9e %17%2 — 225\ | =0

T3+ x5 — 1

A=¢ !

Dynamic Models

® Most physical processes are dynamic in nature. This means
that first principles models describing those processes can be
depicted as differential equations:

d
- x(t) = £(x(t), u(t),;0)
X(to) — XQ

° X(t) is often called the state vector and is the set of
dynamic variables for which we want to solve.

® { istime
e u(t) is a time dependent input that we specify
® O is a vector of time independent parameters.

® X is the initial value of the state vector at

Dynamic Models

Usually, the solution we are interested in is values of the state
vector within some time domain: t € |tg,]

The initial value problem can be rewritten as:

d
(1) = £(x(t),1) Yt € [to, /]
X(tg) = Xg

By convention, the initial time, 10, is often set to be zero.

Since f(x(%), t), can be an arbitrary nonlinear function of the
state vector,; a closed form, analytical solution rarely exists.

Numerically, we will solve this equation by finding the state
vector at a finite number of points within the time domain.

® VWe will need to characterize the accuracy and stability of
solution methods to these problems.

Dynamic Models

® Higher order differential equations can always be rewritten as
systems of first order equations

® Consider the force balance on a driven mass-spring-damper:

d?z dx
- b - kx = f(t
mom oy ke =1)
.l dx
Y = —
et g
dx
® Then:— —
o T
dv

® Andm— - A bv + kx = f(?)

Dynamic Models

® Higher order differential equations can always be rewritten as
systems of first order equations

® C(Consider the force balance on a driven mass-spring-damper:

dx dv
o = m—, -Fbv + kx = f(t)

z(t)
® C(Collecting a state vector, v(t)) gives:

% (ig; > B ((f(t) = bv(zgt)— ka(t))/m >

X f(x(t),u(t),t) or £f(x(t), 1)
3 z(to)
x(to) = (% 10

Existence and Uniqueness

® Example:

® Use separation of variables to solve:

dx 5
E — X
CE(O) — X

® Does a solution exist for all times? Is the solution unique!?

E:dt:><xlo x(lt)>:t:>x(t): T

Existence and Uniqueness

® Example:

® Use separation of variables to solve:

dx 3
E — X
ZC(O) — X0

® Does a solution exist for all times? Is the solution unique!?

L VN 1 t = x(t)? 1

— — p— T —

T3 2 \zg x(t)? 1 9
Lo

Existence and Uniqueness

® A unique solution exists if f(x,1%),is Lipschitz continuous.
® Lipschitz continuity within some domain /) means that:
If(x,t) — £(z,0)|l, <mlx—zf, x,z¢€D
® This is stronger than regular continuity:
i e,) — £(s, 1) — €

® For existence and uniqueness to be guaranteed, f(X, t), needs

to be Lipschitz continuous over the whole domain of X and
in the time domain of interest.

® Examples:

o Is f(x) =x continuous? Is it uniformly Lipschitz cont.?

® Is f(x) = x* continuous? ls it uniformly Lipschitz cont.?

10

Finite Differences

® One way to solve differential equations numerical is to
approximate the derivatives and turn the differential equation
into a sequence of algebraic equations.

® Finite differences are a typical method for this
approximation:

® Forward difference:

d 1
X(t) & o (x(t + At) — x(t)) e

® Backward difference:

x(t — At) x(t + A?)\

11

Finite Differences

® One way to solve differential equations numerical is to
approximate the derivatives and turn the differential equation
into a sequence of algebraic equations.

® Finite differences are a typical method for this
approximation:

© Forwar?z diife:enlce: . | X(t—Ay‘ x(t+At,)\
%X() & Kt(x(+ At) — x(1))

® Backward difference:

d 1
x(t) ~ o (x(t) = x(t — At)
d

12

Finite Differences

® Taylor expansions can be used to evaluate the accuracy of
finite difference approximations:

2 32 3 3
x(t + A1) = x(1) + At x() + S sy + L) +oan®,
d (At)? d? (At)? d°

(t) + O((A)"),

x(t — At) = x(t) — At%x(t) + dt2x(t) BERETRTERS

® Forward difference:

d 1
EX@) ~ Kt<x<t + At) — x(1))
2 72 3 73
— Ait (x(t) + At%x(t) + (A;) jtzx(t) + (A?j) jtgx(t) +0((A)*) — X(t))
d At d? (At)? d?

(t) + O((At)?),

= X0+ 5 Xt + e
® Central difference:

d 1
Ex(t) ~ 2—A75<X(t + At) — x(t — At))
2 72 3 3
— ZLN (X(t) + At%x(t) + (A;) $2x(t) + (A?j) jth(t) +0((An)?)
2 j2 3 3
—(X(t) - At%x(t) + (A;) sz(t) — (A?j) jth(t) + O((At)4))>
d (At)? d°

X - dtgx(t) + O((At)?).

13

Finite Differences

® The order of accuracy of a finite difference approximation is
given by the leading order error in the Taylor expansion.

® For example:

d 1
ﬁx(t) ~ K(X(t + At) — x(t))
2 12 3 13
— Ait (x(t) — At%x(t) + (A;) $2X(t) + <A3t') C;igx(t) +0((A)*) — X(t))
d At d? (At)? d3
= Oxt) + 5 x|+ S i) + o((an?),

® is said to be a first order accurate approximation.

e If the error in the approximation is: F/(At) ~ (At)P?, then
the approximation is pth-order accurate

® The order of accuracy can be determined by calculating the
error in the solution method after one step and plotting:

log |E(At)| = logc + plog At

14

Explicit Methods for IVPs

® Explicit (or Forward) Euler method:

® Approximate the derivative with forward differences:

 (x(t+ At) —x(t)) ~ £(x(t). 1)
x(t + At) & x(t) + (ADF(x(t), 1),

22

® This gives a sequence of approximations for the solution at
different time points:

X(to) = X0
(t() -+ At) ~ X(to) ()f(X(t) Ifo) = X0 + (At)f(XO, to)
x(tg + 2At) ~ x(tg + At) + (A)f (x(tg + At), tg + At)
x(tg + 3AL) =~ x(tg + 2At) + (At)f(x(tg + 2At), tg + 2At)

x(tg + (k + 1)At) ~ x(tg + kAt) + (A (x(to + kAt), tg + kAt)

15

Explicit Methods for IVPs

® Explicit Euler method:

® Approximate the derivative with forward differences:

 (x(t+ At) — x(t)) ~ £(x(t). 1)
x(t + At) ~ x(t) + (At)f(x(t), 1)

22

® This gives a sequence of approximations for the solution at
different time points:

X(to) = X0
(t() -+ At) ~ X(to) ()f(X(t) Ifo) = X0 + (At)f(XO, to)
x(tg + 2At) =~ x(tg + At) + (A)f (x(tg + At), tg + At)
x(tg + 3AL) =~ x(tg + 2At) + (At)f(x(tg + 2At), tg + 2At)

x(tg + (k + 1)At) ~ x(tg + kAt) + (A (x(to + kAt), tg + kAt)

16

Explicit Methods for IVPs

® Explicit Euler method:

® Approximate the derivative with forward differences:

d
—ox(t) = £(x(). 1

L x(t 1 At — x() ~ E£(x(8). 1)

At
x(t + At) = x(t) + (At)f(x(¢), 1)

Q

® This gives a sequence of approximations for the solution at
different time points:

x(tg) = Xg

x(t1) = x(tg) + (At)f(x(tg), to)

X(t2) =~ x(t1) + (At)f(x(t1), t1 t = to + kAt
x(t3) = x(t2) + (At)f(x(t2), t2) k=0,1,2,...

17

Explicit Methods for IVPs

® Explicit Euler method:

f = @(x,t) % Does something

t0 = 0;

tf = 1;

dt = 0.01;

X0 = % Initial condition

t = [tO:dt:tf]
x = zeros(length(x0), length(t));

xC :, 1) = x0;
for 1 = 2:1length(t)
xC:y1)=xC:,1-1)+dt*f(xC:,1-1), tC1-1));

end;

Explicit Methods for IVPs

® Explicit methods are termed explicit because the algebraic
approximation to the IVP does not require a complicated
solution method.

® Higher order explicit methods can be derived by
incorporating information about the solution at
intermediate or past time points.

® There are innumerable different methods by which this can
be done. Some are more accurate, others are more stable,
others still require fewer function evaluations.

® Example: explicit Runge-Kutta method

x(t) + %f(x(t), t)

x(t) + (A (x(t + At/2),t + At/2)

x(t + At/2)
x(t + At)

® uses information at the midpoint of the step

® requires twice as many function evaluations

19

Explicit Methods for IVPs

® Example:

dy_

=y y0)=1 y(t) =e™

® Forward Euler:
y(t + At) = y(t) — Aty(t) = (1 — At)y(?)
y(At) =1 — At

® Midpoint:
y(t+ 8t/ = y(t) = o) = (1= 5) o

y(t + At) = y(t) — Aty(t + At/2) = _1 — At (1 At>_
JA) =1 Ary B ' '

Explicit Methods for IVPs

® Example:
dy —t
— = — : O p—] t _— €
y7 y, y(0) y(t)
Forward Euler
Midpoint

T

QU

|

)

At

MIT OpenCourseWare
https://ocw.mit.edu

10.34 Numerical Methods Applied to Chemical Engineering
Fall 2015

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu
https://ocw.mit.edu/terms

