10.34: Numerical Methods

Applied to
Chemical Engineering

Lecture |2:
Constrained Optimization
Equality constraints and Lagrange multipliers



Recap

® Unconstrained optimization
® Newton-Raphson methods

® TJrust-region methods



Midterm Exam

® Expect 3 problems
® Comprehensive exam:
® Linear algebra
® Systems of nonlinear equations

® Optimization



Constrained Optimization

® Problems of the sort:

min f(x) argminf(x) _




Constrained Optimization

® Problems of the sort:

min f(x)  arg min f(x)

® The feasible set can be described in terms of two types
of constraints:

® Equality constraints: D = {x : ¢(x) = 0}

® Inequality constraints: D = {x : h(x) > 0}



Constrained Optimization

® Problems of the sort:

min f(x) argminf(x) _




Constrained Optimization

® Problems of the sort:

min f(x) arg min f(X)




Constrained Optimization

® Problems of the sort:

min f(x) argminf(x) _




Constrained Optimization

® Examples:

1
® minimize: F(v,X) = imHng + mg’ x

® subjectto: ||x — Xq|lo = L



Constrained Optimization

® Examples:

® minimize: f(x) = ¢’ x

® subjectto: Ax — b <0
x > 0
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Constrained Optimization

® |n general:
® minimize: f(x)

® subject to: c(X)

=0
h(x) > 0

® One approach is to approximate the problem as
unconstrained — penalty methods:
® minimize: N
1 2
F) =760+ o7 | el + > H(=hi(x
1=1

® as i, — 0

o with H(z>0)=1,H(x<0)=0



Equality Constraints

® Method of Lagrange multipliers

® minimize: f(x)

® subjectto: ¢(x) =0
® What are the necessary conditions for defining a minimum?

® Taylor expansion of f(x) in some direction with ||d||s < 1:

fx+d) = f(x)+gx)"d+...
e either g(x) = 0 or g(x) L d at the minimum

® For equality constraints, ¢(Xx) = 0,and ¢(x +d) = 0

e Taylor expansion of ¢(X) in the same direction:

c(x+d)=c(x)+Ve(x)-d+...=d L Ve(x)
e Therefore, g(x) || Ve(x) = g(x) — AVe(x) =0 2



Equality Constraints

® Example
® minimize: f(xq,Ty) = x% + 10x3
® subject to: C(CEl, xg) =21 —To—3 =0

® Contours of the function and the constraint

=
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Equality Constraints

® Method of Lagrange multipliers
® minimize: f(x)
® subjectto: ¢(x) =0

® A solution to the equality constrained problem satisfies:

( g(x) ;(Q)VC(X) ) — 0

® For the unknowns: x, \
e \is called a Lagrange multiplier
® The solution set (x, \)is a critical point of:

L(x,\) = £(x) = Ae(x)

® called the “Lagrangian”
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Equality Constraints

® Example
® minimize: f(xq,Ty) = x% + 10x3
® subject to: C(CEl, xg) =21 —To—3 =0

® Contours of the function and the constraint

==
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Equality Constraints

e Method of Lagrange multipliers
® minimize: f(x)
® subject to: ¢(x) = 0
® What are the necessary conditions for defining a minimum?
® Taylor expansion of f(x) in some direction with ||d||s < 1:
fx+d) = f(x)+gx)"d+...
e either g(x) = 0 or g(x) L d at the minimum
® For equality constraints, c(x) = 0,and c(x +d) =0
e Taylor expansion of c(x) in the same direction:
c(x+d)=c(x)+J.(x)d+...

® The direction belongs to what set of vectors!? 17



Equality Constraints

e Method of Lagrange multipliers
® minimize: f(x)
® subject to: ¢(x) = 0
® What are the necessary conditions for defining a minimum?
® Taylor expansion of f(x) in some direction with ||d||o < 1:
fx+d) = f(x)+gx)"d+...
e either g(x) =0 or g(x) L d at the minimum
e If J.(x)d=0 and g(x) L d,

® then g(x) at the minimum belongs to what set of vectors?

® T[herefore: 18



Equality Constraints

e Method of Lagrange multipliers
® minimize: f(x)
® subject to: ¢(x) = 0
® What are the necessary conditions for defining a minimum?
e Taylor expansion of f(X) in some direction with||d||o < 1:
fx+d) = f(x)+gx)"d+...
® cither g(x)=0o0r g(x) L d
e If J.(x)d=0 and g(x) L d,

® then g(x) at the minimum belongs to what set of vectors?

® T[herefore: 19



Equality Constraints

® Method of Lagrange multipliers
® minimize: f(x)
® subject to: ¢(x) = 0

® A solution to the equality constrained problem satisfies:
( g(x) = Je(x)" A > 0
c(x)
® For the unknowns: x, A
® \is a vector of Lagrange multiplier
® The solution set (X, A)is a critical point of:
L(x,\) = f(x) —c(x)* A

® called the “Lagrangian”
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Inequality Constraints

Interior point methods

® minimize: f(x)

® subjectto:h(x) >0

Rewrite as unconstrained]\c;ptimization by using a barrier:
* MmNz ) — > log(hi(x)

e as p— 07 i=1

For h;(x) — 0, the objective function becomes large

® This creates a barrier from which an unconstrained
optimization scheme may not escape.

Determining the minimum of this new objective function for
progressively weaker barriers (1 — 0T) is important.

® How can this be done reliably?
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Inequality Constraints

® |nterior point methods, example
® minimize: X
® subjectto:x >0
® Rewrite as unconstrained optimization by using a barrier:

® minimize: x — ulog(x)

10°

[t decreasing  /




Inequality Constraints

Interior point methods:
® minimize: f(x)
® subjectto:h(x) >0

Rewrite as unconstrained optimization by using a barrier:

® minimize: f ,uZlog

e as u— 0F

Why a logarithmic barrier?

The minimum of the unconstrained problem is found where:
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Inequality Constraints

Interior point methods:
® minimize: f(x)
® subjectto:h(x) >0

Rewrite as unconstrained optimization by using a barrier:

® minimize: f ,uZlog

e as u— 0F

Use to study a sequence of barrier parameters

Stop when:
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Inequality Constraints

® Example:
® minimize: f(xq,Ty) = x% + 10x3
® subjectto: h(x1,x2) =1 — (21 — 2)2 — (29 — 2)2 > ()

® Contours of the function and the constraint

=
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Inequality Constraints

f = @(x) x(1)A2 + 10 * x(2)A2;
grad_f = @(x) [ 2*x(1); 20*x(2) 1];
H.f =@x) [ 2 0; 0 20 ];
h=@Xx)1-(x(1) -2 )A - ( x(2) - 2 )HN;
grad_h = @(x) [ -2*(x(1)-2); -2*(x(2)-2) 1;
H.h =@x) [ -2 0; 0 -2 ];
phi = @(x,mu) f(C x ) - mu * logC h( x ) );
grad_phi = @(x,mu) grad_f( x ) - mu / h( x ) * grad_h( x );
H_phi = @(x,mu) H_f(C x ) - mu / h(C x ) * H_.h( x ) + mu / h( x )A2 * grad_h( x ) * grad_h( x )';
x=1[2; 217,
for mu = [ 1:-0.01:0.01 ]

while ( norm(C grad_phi( x, mu ) ) > le-8 )

X =X - H_phi( x, mu ) \ grad_phi( x, mu );

end;

end;
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Inequality Constraints

® Example:
® minimize: f(xq,Ty) = x% + 10x3
® subjectto: h(x1,x2) =1 — (21 — 2)2 — (29 — 2)2 > ()

® Contours of the function and the constraint

2.2
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