
   
  

 

 
 

  

10.34: Numerical Methods
 
Applied to
 

Chemical Engineering
 

Lecture 12:
 
Constrained Optimization
 

Equality constraints and Lagrange multipliers
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Recap
 

• Unconstrained optimization
 

• Newton-Raphson methods
 

• Trust-region methods 
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Midterm Exam
 

• Expect 3 problems 

• Comprehensive exam: 

• Linear algebra 

• Systems of nonlinear equations 

• Optimization 
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Constrained Optimization 
• Problems of the sort: 

min f(x) arg min f(x) 
x2D x2D 

f(x1, x2) 

D 

x1 
x2 
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Constrained Optimization
 

•	 Problems of the sort: 

min f(x) arg min f(x) 
x2D	 x2D 

•	 The feasible set can be described in terms of two types 
of constraints: 

•	 Equality constraints: D = {x : c(x) = 0} 

•	 Inequality constraints: D = {x : h(x) > 0} 
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Constrained Optimization 
• Problems of the sort: 

min f(x) arg min f(x) 
x2D x2D 

f(x1, x2) 

D 

x1 
x2 
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Constrained Optimization 
• Problems of the sort: 
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f(x1, x2)

min
x2D

f(x) argmin
x2D

f(x)



 
 

Constrained Optimization 
• Problems of the sort: 

min f(x) arg min f(x) 
x2D x2D 

f(x1, x2) 

D 

x1 
x2 
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Constrained Optimization 
• Examples: 

T• minimize: E(v, x) =  
1 
mkvk22 +mg x
 

2 
• subject to: kx - x0k2 = L 
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Constrained Optimization 
• Examples: 

T
• minimize: f(x) = c x 

• subject to: 
Ax - b  0 
x > 0 
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Constrained Optimization 

•	 In general: 

•	 minimize: f(x) 

•	 subject to: 
c(x) = 0  
h(x) > 0 

•	 One approach is to approximate the problem as 
unconstrained – penalty methods: 

•	 minimize: 
N	

!
1 2F (x) = f(x) +  
2µ 

kc(x)k22 +
X

H(-hi(x))hi(x)
i=1•	 as µ ! 0 

•	 with H(x > 0) = 1, H(x < 0) = 0 
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Equality Constraints
 
• Method of Lagrange multipliers 

• minimize: f(x) 

• subject to: c(x) = 0  

• What are the necessary conditions for defining a minimum? 

• Taylor expansion of f(x) in some direction with kdk2 ⌧ 1: 

f(x + d) = f(x) + g(x)T 
d + . . .  

• either 
g(x) = 0  or 

g(x) ? d at the minimum 

• For equality constraints, c(x) = 0  , and c(x + d) = 0  

• Taylor expansion of c(x) in the same direction: 

c(x + d) = c(x) +rc(x) · d + . . . ) d ? rc(x) 

• Therefore, g(x) k rc(x) ) g(x)- Arc(x) = 0  12 



  

 

  

Equality Constraints
 
• Example 

2 2
• minimize: 
f(x1, x2) =  x1 + 10x
2
 

• subject to: c(x1, x2) = x1 � x2 � 3 = 0 
  

• Contours of the function and the constraint 
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g(x1, x2),rc(x1, x2) 

x1
 



 

  

 

  

     

       

              

 

Equality Constraints
 
• Method of Lagrange multipliers 

• minimize: f(x) 

• subject to: c(x) = 0  

• A solution to the equality constrained problem satisfies:
 
✓ 

g(x)- Arc(x) 
◆ 

= 0  
c(x) 

• For the unknowns: 
x

, A 

• A is called a Lagrange multiplier 

• The solution set (x, A) is a critical point of: 

L(x, A) = f(x)- Ac(x) 

• called the “Lagrangian” 14 



  

 

  

Equality Constraints
 
• Example 

2 2• minimize: 
f(x1, x2) =  x1 + 10x2 

• subject to: c(x1, x2) = x1 � x2 � 3 = 0 
  

• Contours of the function and the constraint 

x2 

x1 15
 



 

  

 

   

                         

                                   

                   

         

  

Equality Constraints
 
• Method of Lagrange multipliers 

• minimize: f(x) 

• subject to: 
c(x) = 0  

• What are the necessary conditions for defining a minimum? 

• Taylor expansion of f(x) in some direction with kdk2 ⌧ 1: 

f(x + d) = f(x) + g(x)T 
d + . . .  

• either 
g(x) = 0  or 

g(x) ? d at the minimum 

• For equality constraints, 
c(x) = 0 , and 

c(x + d) = 0  

• Taylor expansion of 
c(x) in the same direction: 

c(x + d) = c(x) + Jc(x)d + . . . 
  

• The direction belongs to what set of vectors? 17 



Equality Constraints
• Method of Lagrange multipliers

• minimize:  

• subject to: 

• What are the necessary conditions for defining a minimum?

• Taylor expansion of          in some direction with                 :

• either                  or                   at the minimum

• If                          and                   ,

• then          at the minimum belongs to what set of vectors?

• Therefore: 18

f(x)

f(x)

f(x+ d) = f(x) + g(x)Td+ . . .

kdk2 ⌧ 1

g(x) = 0 g(x) ? d

c(x) = 0

g(x) ? dJc(x)d = 0

g(x)



Equality Constraints
• Method of Lagrange multipliers

• minimize:  

• subject to: 

• What are the necessary conditions for defining a minimum?

• Taylor expansion of          in some direction with                 :

• either                  or

• If                          and                   ,

• then          at the minimum belongs to what set of vectors?

• Therefore: 19

f(x)

f(x)

f(x+ d) = f(x) + g(x)Td+ . . .

kdk2 ⌧ 1

g(x) = 0 g(x) ? d

c(x) = 0

g(x) ? dJc(x)d = 0

g(x)



Equality Constraints
• Method of Lagrange multipliers

• minimize:  

• subject to: 

• A solution to the equality constrained problem satisfies:

• For the unknowns:    , 

•     is a vector of Lagrange multiplier

• The solution set           is a critical point of: 

• called the “Lagrangian” 20

f(x)

x

c(x) = 0

✓
g(x)� Jc(x)T�

c(x)

◆
= 0

�

�

(x,�)

L(x,�) = f(x)� c(x)T�



Inequality Constraints
• Interior point methods

• minimize:  

• subject to: 

• Rewrite as unconstrained optimization by using a barrier:

• minimize: 

• as

• For                   , the objective function becomes large

• This creates a barrier from which an unconstrained 
optimization scheme may not escape.

• Determining the minimum of this new objective function for 
progressively weaker barriers (              ) is important.  

• How can this be done reliably? 21

f(x)

h(x) � 0

µ ! 0+

XN
f(x)� µ log(hi(x))

i=1

hi(x) ! 0

µ ! 0+
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Inequality Constraints
• Interior point methods, example

• minimize:  

• subject to: 

• Rewrite as unconstrained optimization by using a barrier:

• minimize: 

22

x

x � 0

x� µ log(x)

x

µ decreasing



Inequality Constraints
• Interior point methods:

• minimize:  

• subject to: 

• Rewrite as unconstrained optimization by using a barrier:

• minimize: 

• as

• Why a logarithmic barrier?

• The minimum of the unconstrained problem is found where:
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f(x)

h(x) � 0

µ ! 0+

XN
f(x)� µ log(hi(x))

i=1



Inequality Constraints
• Interior point methods:

• minimize:  

• subject to: 

• Rewrite as unconstrained optimization by using a barrier:

• minimize: 

• as

• Use __________ to study a sequence of barrier parameters

• Stop __________ when:
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f(x)

h(x) � 0

µ ! 0+

XN
f(x)� µ log(hi(x))

i=1



• Example:

• minimize:  

• subject to: 

• Contours of the function and the constraint

Inequality Constraints

27

f(x1, x2) = x

2
1 + 10x2

2

x1

x2

h(x1, x2) = 1� (x1 � 2)2 � (x2 � 2)2 � 0



Inequality Constraints

f = @(x) x(1)^2 + 10 * x(2)^2;
grad_f = @(x) [ 2*x(1); 20*x(2) ];
H_f = @(x) [ 2 0; 0 20 ]; 

h = @(x) 1 - ( x(1) - 2 )^2 - ( x(2) - 2 )^2;
grad_h = @(x) [ -2*(x(1)-2); -2*(x(2)-2) ];
H_h = @(x) [ -2 0; 0 -2 ];

phi = @(x,mu) f( x ) - mu * log( h( x ) );
grad_phi = @(x,mu) grad_f( x ) - mu / h( x ) * grad_h( x );
H_phi = @(x,mu) H_f( x ) - mu / h( x ) * H_h( x ) + mu / h( x )^2 * grad_h( x ) * grad_h( x )';

x = [ 2; 2 ];

for mu = [ 1:-0.01:0.01 ]
    
    while ( norm( grad_phi( x, mu ) ) > 1e-8 )
        
        x = x - H_phi( x, mu ) \ grad_phi( x, mu );
               
    end;
    
end;

28



• Example:

• minimize:  

• subject to: 

• Contours of the function and the constraint
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Inequality Constraints

29

f(x1, x2) = x

2
1 + 10x2

2

x1

x2

h(x1, x2) = 1� (x1 � 2)2 � (x2 � 2)2 � 0

µ decreasing
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