10.34: Numerical Methods

Applied to
Chemical Engineering

Lecture |:
Organization,
Numerical Error,
Basics of Linear Algebra



Organization

® Purposes of the course:

® Ensure that you are aware of the wide range of easily
accessible numerical methods that will be useful in
your thesis research, at practice school, and in your
career.

® Make you confident in your ability to look up and
apply additional methods when you need them.

® Help you become familiar with MATLAB, other
convenient numerical software, and with simple
programming/debugging techniques.

® Give you an understanding of how common numerical
algorithms work and why they sometimes produce
unexpected results.



Organization

® Resources:

® Course website — details on grading, homework
policy, and homework submission guidelines.

Textbook — Beers, ‘Numerical Methods for Chemical
Engineering”. Notes will be placed on Course website.
Additional text references are given in the syllabus.

® MATLAB tutorials

® Peers — you are encouraged to discuss the course
material, programming, and the homework with your
colleagues. Be aware of the homework policy outlined
in the syllabus, however.

°

TAs and instructors — we are here to help you, and
available for meetings, usually within 24 hours.



Organization

® When to stop:

® The homework for the course should require 9 hours
per week on average — perhaps a little more early on if
you are not proficient with MATLAB.

® Sometimes you may find a homework problem is
consuming an inordinate amount of time even after
you have asked for help.

e |f this happens, just turn in what you have completed
with a note indicating that you know your solution is
incomplete, details about what you think went wrong,
and what you think a correct solution would look like.



Organization

Linear algebra

Solutions of nonlinear equations
Optimization

Initial value problems
Differential-algebraic equations
Boundary value problems
Partial differential equations
Probability theory

Monte Carlo methods

Stochastic chemical kinetics



Numerical Methods

® Motivation:

® Most real engineering problems do not have an exact
solution. Even if there is an exact solution. Can it be
evaluated exactly?

® Application of computational problem solving
methodologies can lead to transformative (as opposed
to incremental) engineering solutions.

® Algorithms to solve problems numerically should be:
® clear
® concise
® able to solve the problem robustly
® use realistic amount of resources

® execute in a realistic amount of time



Numerical Error

® Virtually all computer problem solving is done
approximately. It is essential to quantify the error in
these calculations.

® Example: representation of numbers

m = 3.141592653589 . . .
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® Example: calculating the square root Vs

2 — 5 =0

Babylonian method (iterative solution):
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Numerical Error

® Overflow/underflow — exceeding the largest/smallest
representable number

e Example: 1.3x10% (nm)3 =1.3x107 (km)?
® Solution: rescaling
® Truncation:

® Computers have a finite amount of memory/time to
work with. Most algorithms work within these
constraints to return answers which are accurate to
within some tolerance.

® Solution: the design of algorithms that quickly
minimize truncation error

® Example: Leibniz vs. Newton

i (—1)™ 1i 2"nl?
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Numerical Error

® Truncation (cont.):

® Example: Leibniz vs. Newton

N N
2 : (—1)" ] 1 2N |12 T
In-+1 4 zzzn 1) 4

N Leibniz Newton
I 0.66667 0.66667
2 0.86667 0.73333
3 0.7238l1 0.76190 0.78540...
5 0.74401 0.78038
|10 0.80808 0.78528

® Absolute error:
€abs. — |Lexact — xapprox.|

® Relative error: |$exa,ct — xapprox.‘

Crel. —

‘QE exact |



Numerical Error

® Truncation (cont.):
® Example:2x10* + IxI0-'3 = ? with 8 digit accuracy
® Estimate the absolute error in this calculation.
® Estimate the relative error in this calculation.

® Quantifying and minimizing numerical error is a key aspect
developing numerical algorithms.

® FEven simple calculations introduce numerical errors.

® Those errors can compound and magnify. Ve will see
how shortly.



Linear Algebra

® Primarily concerned with the solutions of systems of
linear equations

® |s there a solution?
® |f there is a solution, is it a unique!
® |s it possible to find the solution or family of solutions!?

® Chemical engineering example: mass balances

3 kgls

nmy + nio =3 1 1 111 _ 3
ity = 21i1q -2 1 117 0
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Linear Algebra

® Row-view:
111 + np, = 3
® FEach row in the system of ~2m1; + 1y = O
equations describes a line.

® The solution represents the
intersection of these lines.

® For dimensions higher than 2, the
solution is an intersection of
other linear manifolds

® How many solutions does the
equation: ax=b, have!

|3



Linear Algebra

® Column view: . . ;
i ) (3)=(5)

® FEach column in the system of
equations describes a vector.

® The solution represents the
correct weighting of these
vectors.

® While conceptually more difficult,
the column view is easier to
extend to arbitrarily high (1]-2)
dimensions. You will see why later.




Row-view:

Column-view:

Linear Algebra

? —>
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separator, 2:|
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Row-view:

Column-view:

Linear Algebra

? —>
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separator, 2:|
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Solving Systems of Equations

ar =b=x =a ‘b

Ax=b=x=A"'b

In MATLAB:

X =A\D

|7



Scalars,Vectors and Matrices

® Scalars:
® Just single numbers!
e Set of all real numbers, R
e Set of all complex numbers,C
o | — \/jl
o Ifzc C,thenz =a+1bwitha,b € R

e Complex conjugate: Z = a — b

® Magnitude:|2| = v/ 2%

o RCC



Scalars,Vectors and Matrices

® \Vectors:
e Ordered sets of numbers: (1, 22,...2TN)

e Set of all real vectors with dimension N, RN

e Addition:

L1 Y1 L1 T Y1
L2 Y2 L2 T Y2
+ —
TN YN TN + YN
® Multiplication by scalar:
c(x1 T3 ... xN) = (cx1 cTo ... CTN)
L1
® Transpose: D
X = , x' = (1 22 ... TN)



Scalars,Vectors and Matrices

® Vectors:

N

® Scalar product: X -y = Z LY

® Norm: HXHp — (

® Properties:

1=1

N 1/p
> $v:p>

1=1

Non-negative: ||x|/, > 0

If ||XHp = (0,then x =0

‘CXHp —

X -y| <

cf

x|

HX‘|‘Y||p <

‘Xp

xlp + [yl

pll¥llg with p,g >0, 1/p+1/qg=1
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Scalars,Vectors and Matrices

® Vectors:

® oo-norm: ||X|| 5 = max 4] N 1/p
® Examples of norms: x|, = E ]
1=1

X = (\/5/2, \/5/2) To

.X1:

‘Xoo:

* [[X[loo = Ix[l2 < [Ix]lx

® [amilies of vectors with the same
norm: |-norm, 2-norm, 60-norm




Scalars,Vectors and Matrices

® Vectors:

® oo-norm:||x||o, = max |z;]

(/

® Examples of norms:

x = (v/2/2,v2/2)

® X

® X

® X

® ||x]loc

® [amilies of vectors with the same
norm: |-norm, 2-norm, 00-norm

1:

2:

oo T

< [lxellz < {x]ls

N 1/p
1%l = (Z :vz-p)
1=1

L

i




Scalars, Vectors and Matrices

® Vectors:

® Comparing vectors with norm metrics:

e [x—Yy|2>0

e Ifllx—y|2=0,thenx=1y y

o Ix —yll2 < llx=vll2+|ly — vl y

® C(alculating norms in MATLAB:

e norm( x, p ), norm( x, Inf )

® How many operations to compute the norm?

® How can | measure relative and absolute error for
vectors!?
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Scalars, Vectors and Matrices

® Vectors:

® Comparing vectors with norm metrics:

e [x—y|2>0

¢ If|x —y|2=0,thenx =y y

o Ix —yll2 < [lx = vz +[ly — vl y

® C(alculating norms in MATLAB:

e norm( X, p ), norm(C x, Inf )

® How many operations to compute the norm?

® T[he relative and absolute error in a vector:
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Scalars, Vectors and Matrices

® Vectors:

® What mathematical object is the equivalent of an
infinite dimensional vector?
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Scalars, Vectors and Matrices

® Vectors:

® What mathematical object is the equivalent of an
infinite dimensional vector?
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Scalars,Vectors and Matrices

® Matrices:

® Ordered sets of numbers: A1 Az ... Aim
Ao Ao ... Ao

A = . . | |
An1 Ano ... Anwum

® Set of all real matrices with N rows and M columns, RNxM
® Additionn C=A+B = C;; = A;; + B;;

® Multiplication by scalar: C = cA = C;; = cA;;

e Transpose: C = Al = Ci;i = Aj;

® Trace (square matrices): ,;

1=1
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Scalars,Vectors and Matrices

® Matrices:

M
® Matrix-vector product: y = AX = y; = Z Aijx;
g=1

M
® Matrix-matrix product: C = AB = C@-j = Z AikBkj
k=1

® Properties:

no commutation in general: AB # BA
association: A(BC) = (AB)C

distribution: A(B + C) = AB + AC
transposition: (AB)? = BT A’

inversion: AT*A = AA™!t =T if det(A) # 0

28



Scalars,Vectors and Matrices

® Matrices:
® Matrix-matrix product:

® Vectors are matrices too:
o X & RN X & ]RNXl

o yT ERN yT €R1XN

® What is: yTX?

M
k=1

29



Scalars,Vectors and Matrices

® Matrices:
® Matrix-matrix product:

® Vectors are matrices too:
o X & RN X & RNXl

o yT ERN yT €R1XN

® What is: yTX?

30



Scalars,Vectors and Matrices

® Matrices:
¢ Dyadic product A =xy’ =xQy = Aij = my;

® Determinant (square matrices only):

N
_ E ANt AL AT
7=1
M;i(A) =
( A Ay ... Agioy Aijry - AN \
Ap Ap ... Apj-n Ay oo AoN
det | Agin Ag-12 .- Ag-ng-n Ay oo A
Ay Az -+ Aai-n Aagey - AN
K ANt ANz oo ANG-1) ANnG+1)y - ANN )

° det(c) = C
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