10.34: Numerical Methods Applied to Chemical Engineering

Lecture I: Organization, Numerical Error, Basics of Linear Algebra

- Purposes of the course:
 - Ensure that you are aware of the wide range of easily accessible numerical methods that will be useful in your thesis research, at practice school, and in your career.
 - Make you confident in your ability to look up and apply additional methods when you need them.
 - Help you become familiar with MATLAB, other convenient numerical software, and with simple programming/debugging techniques.
 - Give you an understanding of how common numerical algorithms work and why they sometimes produce unexpected results.

- Resources:
 - Course website details on grading, homework policy, and homework submission guidelines.
 - Textbook Beers, "Numerical Methods for Chemical Engineering". Notes will be placed on Course website. Additional text references are given in the syllabus.
 - MATLAB tutorials
 - Peers you are encouraged to discuss the course material, programming, and the homework with your colleagues. Be aware of the homework policy outlined in the syllabus, however.
 - TAs and instructors we are here to help you, and available for meetings, usually within 24 hours.

- When to stop:
 - The homework for the course should require 9 hours per week on average – perhaps a little more early on if you are not proficient with MATLAB.
 - Sometimes you may find a homework problem is consuming an inordinate amount of time even after you have asked for help.
 - If this happens, just turn in what you have completed with a note indicating that you know your solution is incomplete, details about what you think went wrong, and what you think a correct solution would look like.

- Linear algebra
- Solutions of nonlinear equations
- Optimization
- Initial value problems
- Differential-algebraic equations
- Boundary value problems
- Partial differential equations
- Probability theory
- Monte Carlo methods
- Stochastic chemical kinetics

Numerical Methods

- Motivation:
 - Most real engineering problems do not have an exact solution. Even if there is an exact solution. Can it be evaluated exactly?
 - Application of computational problem solving methodologies can lead to transformative (as opposed to incremental) engineering solutions.
- Algorithms to solve problems numerically should be:
 - clear
 - concise
 - able to solve the problem robustly
 - use realistic amount of resources
 - execute in a realistic amount of time

	ddphi10i		two	odra	pDGa			dph
	ddphi01		WOO	drpl	DGdO		d	phi
								dph
					DGdO			
	ddpsi01							
	ddxi01 =		odr	۳pDi	GdG		dx	
	ddphi21r		two	odri	pDGd			dph
	ddphi21i							
	ddchi21r							
				alpi	had(
	ddchi21i		two	odr	pDGo			dch
					had(
	ddpsi21r							
	ddpsi21i							
	ddxi21r							
_	ddxi21i		woo	irpl	DGd(d	
1	ddphi32r			odri	pDGo			dph
					AdG			
	ddphi32i				pDGo			dph
	uupniisei							
					AdG			
	ddchi32r				pDGo			
				alpi	had(
					AdG.			
	ddchi32i		two	odri	pDGo			dch
					had(
					AdG			
	ddpsi32r				pDGo			dps
					AdG			
	ddpsi32i			odrj	pDGo			dps
					AdG			
	ddxi32r		woo	irpl	DGdO		d	
					had(
					AdG			
	ddxi32i				DGd(
					had(
					AdG			
	ddeta32r		two	odr	pDGo			det
				alp	had(ta3
	ddeta32i				pDGo			
					had(
	ddtheta3			two	drp[dG	/	* d

- Virtually all computer problem solving is done approximately. It is essential to quantify the error in these calculations.
 - Example: representation of numbers

 $\pi = 3.141592653589\ldots$

1100100100001111110110101

significand (24 bits) exponent (8 bits) $1 + \sum_{n=1}^{p-1} \operatorname{bit}_n \times 2^{-n} \times 2^e$

• Example: calculating the square root \sqrt{s}

 $x^2 - s = 0$

Babylonian method (iterative solution):

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{s}{x_n} \right)$$

- Overflow/underflow exceeding the largest/smallest representable number
 - Example: $I.3 \times 10^{45} (nm)^3 = I.3 \times 10^9 (km)^3$
 - Solution: rescaling
- Truncation:
 - Computers have a finite amount of memory/time to work with. Most algorithms work within these constraints to return answers which are accurate to within some tolerance.
 - Solution: the design of algorithms that quickly minimize truncation error
 - Example: Leibniz vs. Newton

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} = \frac{\pi}{4}$$

$$\frac{1}{2}\sum_{n=0}^{\infty} \frac{2^n n!^2}{(2n+1)!} = \frac{\pi}{4}$$

- Truncation (cont.):
 - Example: Leibniz vs. Newton

$$\sum_{n=0}^{N} \frac{(-1)^n}{2n+1} = \frac{\pi}{4} \qquad \qquad \frac{1}{2} \sum_{n=0}^{N} \frac{2^n n!^2}{(2n+1)!} = \frac{\pi}{4}$$

N	Leibniz	Newton			
I	0.66667	0.66667			
2	0.86667	0.73333			
3	0.72381	0.76190			
5	0.74401	0.78038			
10	0.80808	0.78528			

0.78540...

• Absolute error:

$$\epsilon_{\text{abs.}} = |x_{\text{exact}} - x_{\text{approx.}}|$$

Relative error:
 $\epsilon_{\text{rel.}} = \frac{|x_{\text{exact}} - x_{\text{approx.}}|}{|x_{\text{exact}}|}$

- Truncation (cont.):
 - Example: $2 \times 10^{-4} + 1 \times 10^{-13} = ?$ with 8 digit accuracy
 - Estimate the absolute error in this calculation.
 - Estimate the relative error in this calculation.
- Quantifying and minimizing numerical error is a key aspect developing numerical algorithms.
- Even simple calculations introduce numerical errors.
 - Those errors can compound and magnify. We will see how shortly.

Linear Algebra

- Primarily concerned with the solutions of systems of linear equations
 - Is there a solution?
 - If there is a solution, is it a unique?
 - Is it possible to find the solution or family of solutions?
- Chemical engineering example: mass balances

Linear Algebra

- Row-view:
 - Each row in the system of equations describes a line.
 - The solution represents the intersection of these lines.
 - For dimensions higher than 2, the solution is an intersection of other linear manifolds
 - How many solutions does the equation: ax=b, have?

$$\dot{m}_1 + \dot{m}_2 = 3$$

 $-2\dot{m}_1 + \dot{m}_2 = 0$

- Column view:
 - Each column in the system of equations describes a vector.
 - The solution represents the correct weighting of these vectors.
 - While conceptually more difficult, the column view is easier to extend to arbitrarily high dimensions. You will see why later.

$$\dot{m}_1 \left(\begin{array}{c} 1 \\ -2 \end{array} \right) + \dot{m}_2 \left(\begin{array}{c} 1 \\ 1 \end{array} \right) = \left(\begin{array}{c} 3 \\ 0 \end{array} \right)$$

Solving Systems of Equations

$$ax = b \Rightarrow x = a^{-1}b$$

$$Ax = b \Rightarrow x = A^{-1}b$$

In MATLAB:

$$x = A \setminus b$$

- Scalars:
 - Just single numbers!
 - Set of all real numbers, ${\mathbb R}$
 - Set of all complex numbers, $\mathbb C$

•
$$i = \sqrt{-1}$$

- If $z\in \mathbb{C}$, then $z=a+ib\,$ with $a,b\in \mathbb{R}$
- Complex conjugate: $\bar{z} = a ib$
- Magnitude: $|z| = \sqrt{z\bar{z}}$
- $\mathbb{R} \subset \mathbb{C}$

- Vectors:
 - Ordered sets of numbers: $(x_1, x_2, \ldots x_N)$
 - Set of all real vectors with dimension N, \mathbb{R}^N
 - Addition:

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_N \end{pmatrix} + \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{pmatrix} = \begin{pmatrix} x_1 + y_1 \\ x_2 + y_2 \\ \vdots \\ x_N + y_N \end{pmatrix}$$

19

• Multiplication by scalar:

$$c(x_1 \ x_2 \ \dots \ x_N) = (cx_1 \ cx_2 \ \dots \ cx_N)$$
• Transpose:

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_N \end{pmatrix} \quad \mathbf{x}^T = (x_1 \ x_2 \ \dots \ x_N)$$

N

- Vectors:
 - Scalar product: $\mathbf{x} \cdot \mathbf{y} = \sum x_i y_i$

• Norm:
$$\|\mathbf{x}\|_p = \left(\sum_{i=1}^N |x_i|^p\right)^{1/p}$$

- Properties:
 - Non-negative: $\|\mathbf{x}\|_p \ge 0$
 - If $\|\mathbf{x}\|_p = 0$, then $\mathbf{x} = 0$
 - $||c\mathbf{x}||_p = |c|||\mathbf{x}||_p$
 - $|\mathbf{x} \cdot \mathbf{y}| \le ||\mathbf{x}||_p ||\mathbf{y}||_q$ with $p, q > 0, \ 1/p + 1/q = 1$
 - $\|\mathbf{x} + \mathbf{y}\|_p \le \|\mathbf{x}\|_p + \|\mathbf{y}\|_p$

- Vectors:
 - • norm: $\|\mathbf{x}\|_{\infty} = \max_{i} |x_{i}|$
 - Examples of norms:

 $\mathbf{x} = (\sqrt{2}/2, \sqrt{2}/2)$

- $\|\mathbf{x}\|_1 =$
- $\|\mathbf{x}\|_2 =$
- $\bullet \|\mathbf{x}\|_{\infty} =$
- $\|\mathbf{x}\|_{\infty} \leq \|\mathbf{x}\|_{2} \leq \|\mathbf{x}\|_{1}$
- Families of vectors with the same norm: I-norm, 2-norm, ∞-norm

$$\|\mathbf{x}\|_p = \left(\sum_{i=1}^N |x_i|^p\right)^{1/p}$$

- Vectors:
 - ∞ -norm: $\|\mathbf{x}\|_{\infty} = \max_{i} |x_i|$
 - Examples of norms:

 $\mathbf{x} = (\sqrt{2}/2, \sqrt{2}/2)$

- $\|\mathbf{x}\|_1 =$
- $\|\mathbf{x}\|_2 =$
- $\|\mathbf{x}\|_{\infty} =$
- $\|\mathbf{x}\|_{\infty} \leq \|\mathbf{x}\|_{2} \leq \|\mathbf{x}\|_{1}$
- Families of vectors with the same norm: I-norm, 2-norm, ∞-norm

$$\|\mathbf{x}\|_{p} = \left(\sum_{i=1}^{N} |x_{i}|^{p}\right)^{1/p}$$

• Vectors:

• Comparing vectors with norm metrics:

•
$$\|\mathbf{x} - \mathbf{y}\|_2 \ge 0$$

• If
$$\|\mathbf{x} - \mathbf{y}\|_2 = 0$$
 , then $\mathbf{x} = \mathbf{y}$

•
$$\|\mathbf{x} - \mathbf{y}\|_2 \le \|\mathbf{x} - \mathbf{v}\|_2 + \|\mathbf{y} - \mathbf{v}\|_2$$

- Calculating norms in MATLAB:
 - norm(x, p), norm(x, Inf)
- How many operations to compute the norm?
- How can I measure relative and absolute error for vectors?

• Vectors:

• Comparing vectors with norm metrics:

•
$$\|\mathbf{x} - \mathbf{y}\|_2 \ge 0$$

• If
$$\|\mathbf{x} - \mathbf{y}\|_2 = 0$$
 , then $\mathbf{x} = \mathbf{y}$

•
$$\|\mathbf{x} - \mathbf{y}\|_2 \le \|\mathbf{x} - \mathbf{v}\|_2 + \|\mathbf{y} - \mathbf{v}\|_2$$

- Calculating norms in MATLAB:
 - norm(x, p), norm(x, Inf)
- How many operations to compute the norm?
- The relative and absolute error in a vector:

- Vectors:
 - What mathematical object is the equivalent of an infinite dimensional vector?

- Vectors:
 - What mathematical object is the equivalent of an infinite dimensional vector?

- Matrices:
 - Ordered sets of numbers: $\mathbf{A} = \begin{pmatrix} A_{11} & A_{12} & \dots & A_{1M} \\ A_{21} & A_{22} & \dots & A_{2M} \\ \vdots & \vdots & \ddots & \vdots \\ A_{N1} & A_{N2} & \dots & A_{NM} \end{pmatrix}$
 - Set of all real matrices with N rows and M columns, $\mathbb{R}^{N imes M}$
 - Addition: $\mathbf{C} = \mathbf{A} + \mathbf{B} \Rightarrow C_{ij} = A_{ij} + B_{ij}$
 - Multiplication by scalar: $\mathbf{C} = c\mathbf{A} \Rightarrow C_{ij} = cA_{ij}$
 - Transpose: $\mathbf{C} = \mathbf{A}^T \Rightarrow C_{ij} = A_{ji}$
 - Trace (square matrices): $Tr \mathbf{A} = \sum_{i=1}^{N} A_{ii}$

- Matrices:
 - Matrix-vector product: $\mathbf{y} = \mathbf{A}\mathbf{x} \Rightarrow y_i = \sum A_{ij}x_j$
 - Matrix-matrix product: $\mathbf{C} = \mathbf{AB} \Rightarrow C_{ij} = \sum A_{ik} B_{kj}$

 \mathcal{M}

i=1

M

k=1

- Properties:
 - no commutation in general: $\mathbf{AB} \neq \mathbf{BA}$
 - association: $\mathbf{A}(\mathbf{BC}) = (\mathbf{AB})\mathbf{C}$
 - distribution: A(B + C) = AB + AC
 - transposition: $(\mathbf{AB})^T = \mathbf{B}^T \mathbf{A}^T$
 - inversion: $\mathbf{A}^{-1}\mathbf{A} = \mathbf{A}\mathbf{A}^{-1} = \mathbf{I}$ if $\det(\mathbf{A}) \neq 0$

- Matrices:
 - Matrix-matrix product:
 - Vectors are matrices too:

•
$$\mathbf{x} \in \mathbb{R}^N$$
 $\mathbf{x} \in \mathbb{R}^{N \times 1}$

•
$$\mathbf{y}^T \in \mathbb{R}^N \ \mathbf{y}^T \in \mathbb{R}^{1 \times N}$$

• What is:
$$\mathbf{y}^T \mathbf{x}$$
 ?

$$\mathbf{C} = \mathbf{AB} \Rightarrow C_{ij} = \sum_{k=1}^{M} A_{ik} B_{kj}$$

- Matrices:
 - Matrix-matrix product:
 - Vectors are matrices too:

•
$$\mathbf{x} \in \mathbb{R}^N$$
 $\mathbf{x} \in \mathbb{R}^{N \times 1}$

•
$$\mathbf{y}^T \in \mathbb{R}^N \ \mathbf{y}^T \in \mathbb{R}^{1 \times N}$$

• What is:
$$\mathbf{y}^T \mathbf{x}$$
 ?

- Matrices:
 - Dyadic product: $\mathbf{A} = \mathbf{x}\mathbf{y}^T = \mathbf{x} \otimes \mathbf{y} \Rightarrow A_{ij} = x_i y_j$
 - Determinant (square matrices only): $\det(\mathbf{A}) = \sum_{j=1}^{N} (-1)^{i+j} A_{ij} M_{ij}(\mathbf{A})$ $M_{ij}(\mathbf{A}) =$

$$\det \begin{pmatrix} A_{11} & A_{12} & \dots & A_{1(j-1)} & A_{1(j+1)} & \dots & A_{1N} \\ A_{21} & A_{22} & \dots & A_{2(j-1)} & A_{2(j+1)} & \dots & A_{2N} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ A_{(i-1)1} & A_{(j-1)2} & \dots & A_{(i-1)(j-1)} & A_{(i-1)(j+1)} & \dots & A_{(i-1)N} \\ A_{(i+1)1} & A_{(j+1)2} & \dots & A_{(i+1)(j-1)} & A_{(i+1)(j+1)} & \dots & A_{(i+1)N} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ A_{N1} & A_{N2} & \dots & A_{N(j-1)} & A_{N(j+1)} & \dots & A_{NN} \end{pmatrix}$$

•
$$\det(c) = c$$

10.34 Numerical Methods Applied to Chemical Engineering Fall 2015

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.