
   
  

 

 
 

10.34: Numerical Methods
 
Applied to
 

Chemical Engineering
 

Lecture 2:
 
More basics of linear algebra
 

Matrix norms,
 
Condition number
 

1 



 

   

Recap
 

• Numerical error 

• Scalars, vectors, and matrices
 

• Operations 

• Properties 
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Recap
 

•	 Vectors: 

•	 What mathematical object is the equivalent of an 
infinite dimensional vector? 
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Scalars,Vectors and Matrices
 

•	 Vectors: 

•	 What mathematical object is the equivalent of an 
infinite dimensional vector? 

•	 A function. 

4 



  

        

 

   Scalars,Vectors and Matrices
 

• Matrices: 0 
A11 A12 . . .  A1M 

1
• Ordered sets of numbers: 

A21 A22 . . .  A2MB CB C
A =
 B
 C
A
 

.... .
 
.... 

...
@
 

AN1 AN2 . . .  ANM  

• Set of all real matrices with N rows and M columns, RN⇥M
 

• Addition: C = A + B ) Cij = Aij + Bij 

• Multiplication by scalar: C = cA ) Cij = cAij 

• Transpose: C = AT ) Cij = Aji 

• Trace (square matrices): N

Tr A = 
X 

Aii 

i=1 
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   Scalars,Vectors and Matrices 
• Matrices: 

M

• Matrix-vector product: 
y = Ax ) yi = 

X 
Aij xj 

j=1 
M

• Matrix-matrix product: C = AB ) Cij = 
X 

AikBkj 

k=1• Properties: 

• no commutation in general: AB =6 BA 

• association: A(BC) = (AB)C 

• distribution: A(B +C) = AB +AC 

• transposition: (AB)T = BT AT 

• inversion: A-1A = AA-1 = I if 6det(A) = 0  
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   Scalars,Vectors and Matrices 
• Matrices: 

• Matrix-matrix product: 

• Vectors are matrices too: 

x 2 RN 
x 2 RN⇥1• 

• T T y 2 RN y 2 R1⇥N 

T• What is: y x ? 

M

C = AB ) Cij = 
X 

AikBkj 

k=1 
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• A scalar:

   

y

T
x = y · x

Scalars,Vectors and Matrices 
• Matrices:

• Matrix-matrix product:

• Vectors are matrices too:

x 2 RN 
x 2 RN⇥1• 

T T 2 R1⇥Ny 2 RN y• 
T• What is: y x ?
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   Scalars,Vectors and Matrices
 

• Matrices: 

• Examples: A, B 2 RN⇥N 
x 2 RN 

• How many operations to compute:
 

• Ax 

• AB 

• ABx 

• What is x T 
ABx ? 

• What is ABxx

T ? 
9 
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for any i = 1, 2, . . . N. The quantity Mij(A) is called a minor of A and
is the determinant of an (N - 1) ⇥ (N - 1) matrix that is identical to A

but with the ith row and the jth column removed:

.

This minor is then calculated using the same recursive formula (equa-
tion 2.28). The recursion is closed by the identity det(c) = c, where
c 2 C is a scalar.

Consider the 2 ⇥ 2 matrix:

A =
A11 A12
A21 A22

!

.

The determinant is det(A) = A11M11 - A12M12, where with the ele-
ments in red excluded:

M11 = det
A11 A12
A21 A22

!

= det(A22) = A22,

and

M12 = det
A11 A12
A21 A22

!

= det(A21) = A21.

Therefore, det(A) = A11 A22 - A12 A21.
The determinant has a simple geometric interpretation that can be

drawn from the previous example. As shown in figure 2.5, the rows
of the 2 ⇥ 2 matrix A, correspond to vectors along the vertices of a
rhombus. The area within the rhombus is equal to the absolute value of
the determinant. A matrix whose rows are parallel vectors will create
a rhombus with no area. The determinant is zero and that matrix is
singular. A similar picture can be imagined for high dimensions. The
edges of an N-dimensional parallelepiped are given by all possible
sums of the rows of a square matrix A 2 CN⇥N . The N-dimensional
volume within this parallelepiped corresponds to the absolute value
of the determinant. If the rows are such that the parallelepiped is less
than N-dimensional, it contains no volume and the determinant is zero.
Such a matrix is singular.

Some properties of the determinant include:

  

   

 

 

 

Scalars,Vectors and Matrices
 

• Matrices: 
T• Dyadic product: 

A = xy = x ⌦ y ) Aij = xiyj 

• Determinant (square matrices only): 
N

det(A) =  
X

(-1)i+j Aij Mij (A) 
j=1

Mij(A) =

. . .  . . .  A11 A12 A1(j-1) A1(j+1) A1N 

A21 A22 . . .  A2(j-1) A2(j+1) . . .  A2N 
. .. . . . .
 . . . . . . .
. .. . . . .
 

det
 . . .  . . .  A(i-1)1 A(j-1)2 A(i-1)(j-1) A(i-1)(j+1) A(i-1)N 

. . .  . . .  A(i+1)1 A(j+1)2 A(i+1)(j-1) A(i+1)(j+1) A(i+1)N 
. . . . .
. .. . . . . . .
. .. . . . .
 

1 

C

C

C

C

C

C

C

C

C

C

C

C

A
'
AN1 AN2 . . .  AN(j-1) AN(j+1) . . .  ANN 
  

det(c) =  c• 
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B

B

B

B

B

B

B

B

B

B

B

B
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   Scalars,Vectors and Matrices
 

• Matrices: 

• Determinant (square matrices only): 
N

det(A) =  
X

(-1)i+j Aij Mij (A) 

• Properties: j=1 

• If any row or column is zeros, det(A) = 0  

• If any row or column is multiplied by a 

det(A
c 
1
 A
c 

2
 aA
c 
3
 . . .  A
cN
) =  a det(A)
 

• Swapping any row or column changes the sign 


• det(AT ) = det(A) 

det(AB) =  det(A) det(B)• 
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   Scalars,Vectors and Matrices 

•	 Matrices: 

•	 Example: 
✓	 

�2 1 
◆ 

A	 = 
1 �2 

•	 Calculate: det(A) 

•	 How many operations to compute det(A) in 
general? 

N

det(A) =  
X

(-1)i+j Aij Mij (A) 
j=1 13 



              

✓ 
�2 1 

◆ 

A = 
1 �2 

det(A) recursively takes O(N !) but MATLAB does it in O(N3)
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   Scalars,Vectors and Matrices
 
• Matrices: 

• What are matrices? 

• They represent transformations! 

• Examples: 
y = Ax 

0 

✓ 
x1/2 

◆ 

y = 
x2/2 

✓

1 
2

◆
 

0
 1 
2 15 



   Scalars,Vectors and Matrices 
• Matrices: 

• What are matrices? 

• They represent transformations! 

• Examples: 
y = Ax 

✓ ◆
x2 y = 
x1 

✓ 
0 1

◆
 

1 0 
  16 



   Scalars,Vectors and Matrices 
• Matrices: 

• What are matrices? 

• They represent transformations! 

✓ 
cos ✓x1 - sin ✓x2 

◆ 

y = 
sin ✓x1 + cos ✓x2 

◆ 

• Examples: 
y = Ax 

✓ 
cos ✓ - sin ✓ 
sin ✓ cos ✓ 17 



   Scalars,Vectors and Matrices
 
• Matrices: 

• What are matrices? 

• They represent transformations! 

• Examples: 
y = Ax 

✓ 
1 1

◆
 

1 1 
  18 



   

  

  

   

   Scalars,Vectors and Matrices
 

•	 Matrices: 

•	 What are matrices? 

•	 They represent transformations! 

•	 If a transformation is unique, then it can be undone. 

•	 The matrix is invertible: det(A) = 06

•	 A unique solution to the system of equations 
exists: 

x = A�1 
y 

•	 What happens if a transformation is just barely 
unique? ✓	 

1 1 + ✏ 
◆ 

A	 = 
1 1 

20 



  

   Scalars,Vectors and Matrices
 

• Matrices: 

• Matrices are maps between vector spaces! 

A 2 RN⇥M 

RM RN 

y = Ax 

x 2 RM y 2 RN 

21 



  

     

   Scalars,Vectors and Matrices
 

• Matrices: 

• Matrices are maps between vector spaces! 

RN 

y = Ax 

y 2 RN 

A 2 RN⇥N 

RN 

x 2 RN 

A�1 2 RN⇥N 

• When a square matrix is invertible, there is a unique 
map back the other direction 

22 



  

    
 

   Scalars,Vectors and Matrices
 

• Matrices: 

• Matrices are maps between vector spaces! 

RN 

y = Ax 

y 2 RN 

A 2 RN⇥N 

RN 

x 2 RN 

• When a square matrix is not invertible, the map is not 

unique or does not cover the entire vector space.
 

23 



  

    
 

   Scalars,Vectors and Matrices
 

• Matrices: 

• Matrices are maps between vector spaces! 

RN 

y = Ax 

y 2 RN 

A 2 RN⇥N 

RN 

x 2 RN 

• When a square matrix is not invertible, the map is not 

unique or does not cover the entire vector space.
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   Scalars,Vectors and Matrices 
•	 Matrices: 

•	 Matrix norms: A 2 RN⇥M 
x 2 RM 

•	 Induced norms: kAxkpkAkp = max 
x kxkp 

•	 Among all vectors in RM, what is the maximum 
“stretch” caused by the matrix A ? 

kyk2• Example: let 
y = Ax then kAk2 = max 

x	 kxk2 

M

• What is kAk1 ? kAk1 = max 
X 

|Aij |
i 

j=1 
N

• What is kAk1 ? kAk1 = max 
X 

|Aij |
j 

i=1 25 



          

                

                                       

 

 

 

   Scalars,Vectors and Matrices 
• Matrices: 

• Matrix norms: A 2 RN⇥M 
x 2 RM B 2 RM⇥O 

• What is kAk2 ? kAk2 = 
r 

max Aj (AT A)

j 

• Aj (A
T A) is an eigenvalue of AT A 

• Properties: 

• kAkp > 0, kAkp = 0  only if A = 0 
  

kcAkp = |c|kAkp• 
kAxkp  kAkpkxkp• 
kABkp  kAkpkBkp• 

• kA + Bkp  kAkp + kBkp 

26 



    

                   

                
      

     

     

   Scalars,Vectors and Matrices 
•	 Matrices: 

•	 Using matrix norms to estimate numerical error in 

solution of linear equations:
 

•	 Suppose: 
Ax = b , has exact solution: 

x = A 1
b
 

•	 If there is a small error in b , denoted 6b, how
 
much of an error is produced in x ?
 

x + 6x = A-1(b + 6b) 
6x	 = A-16b 

•	 Absolute error in x : 

k5xkp = kA 15bkp  kA 1kpk5bkp 

•	 Relative error in 
x : 

kbkp = kAxkp  kAkpkxkp ) kxkp >
kbkp 

kAkpk5xkp	 k5bkp kAkpkA-1kpkxkp	 kbkp 27 



 

     

   

    
  

                    

   

 

 

   Scalars,Vectors and Matrices 
•	 Matrices: 

•	 Condition number: (A) = kAkpkA�1kp 

•	 Measures how numerical error is magnified in 

solution of linear equations.
 

•	 Assume a unique solution exists, can we find it? 

•	 (R.E. in answer) is bounded by (condition 
number) x (R.E. in data) 

•	 log10 (A) gives the number of lost digits 

•	 “Ill-conditioned” means a large condition number 

•	 Examples: 

(I) = 1• ✓	 
1 1 + 10�10 

◆ 

	 ⇡ 1010• 1 1	 28 



 

 

   Scalars,Vectors and Matrices 
• Matrices: 

• Condition number: (A) = kAkpkA�1kp 

• Examples: 

•	 Polynomial interpolation: NX 
j�1 

yi = aj xi 
j=1 

y = Va 

• Vandermonde matrix: 

y 

x 
0


1

1


2
1


N 
1
x1 x
 . . .  x 


2
2


N 
2
 

V =
 
B
B
B
@
 

1
...
 

C

x2 x
 . . .  x 


(V) > N2N , N � 1

C
C
A
 

.... .
 
.... 

... 
xN x
2 

N
 . . . 
  x 
NN
 29 1



 

                  

             

     
     

   Scalars,Vectors and Matrices 
• Matrices: 

• Condition number: 

• Ax = b is ill-conditioned. What now? 

• Rescale the equations: 

(D1A)x = D1b 

• Rescale the unknowns: 

(AD2)(D
�1 

x) =  b2 

• Rescale both: 

(D1AD2)(D
 1 

x) =  D1b2 

• D1 and D2 are diagonal matrices 

• An optimal rescaling exists: Braatz and Morari,
 
SIAM J. Control and Optimization 32, 1994
 30 
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109

Scalars,Vectors and Matrices
 
• Matrices: 

• Condition number: 

• Rescaling example: 
✓ 

1010 1 
◆
 

A = 
1 10�9
 

(A) ⇡ 

✓ 
10�10 0 

◆ 

D = , (DA) ⇡
0 1
 

• The simplest solution is to rescale rows or 
columns by their maximum element 

31 



   

  

 

            

                

   Scalars,Vectors and Matrices 

• Matrices: 

• Preconditioning: 

• Change the problem so it is easier to solve! 

• Instead of solving: 
Ax = b 

• Solve: (P1AP2)(P
�1 

x) =  P1b2 

• P1 – left, P2 – right, preconditioner 

• Perhaps the matrix P1AP2 has better properties: 

• condition number 

• structure 

• sparsity pattern 

33 
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