
   
  

 

 
  

 

10.34: Numerical Methods
 
Applied to
 

Chemical Engineering
 

Lecture 3:
 
Existence and uniqueness of solutions
 

Four fundamental subspaces
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Recap
 

• Scalars, vectors, and matrices
 

• Transformations/maps 

• Determinant 

• Induced norms 

• Condition number 
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Recap
 

• Matrices: 

• Matrices are maps between vector spaces! 

y = Ax 

0

@
-2 
1 
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1 0
 

A =
 -2
 1
 
1
 -2
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Recap
 

• Matrices: 

• Matrices are maps between vector spaces! 

y = Ax 

0 
-2 1  0 1  

1 

A = 1 -2 1 1  @ A 

0 1 -2 1  
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Recap
 

• Matrices: 

• Matrices are maps between vector spaces! 

y = Ax 

0 
-2 1 0 

1 

1 -2 1 
A = 

B C
B
0 1 -2 

C@ A 

1 1 1 
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Recap
 

• Matrices: 

• Matrices are maps between vector spaces! 

y = Ax 

Tss
A = I - ksk22 
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Existence and Uniqueness 
• Example: 

phosphate (P) 
dirt (D) 

water (W) 

washer 
dryer 

decanter mixer 

1 

2 

3 

4 

5 

6 

7 

8 

9 

phosphate (P) 
dirt (D) 

water (W) 

phosphate (P) 
dirt (D) 

water (W) 

phosphate (P) 
dirt (D) 

water (W) 

phosphate (P) 
dirt (D) 

water (W) 

phosphate (P) 
dirt (D) 

water (W) 

phosphate (P) 
dirt (D) 

water (W) 

phosphate (P) 
dirt (D) 

water (W) 

phosphate (P) 
dirt (D) 

water (W) 

Stream 1 carries 1800 kg/hr P, 1200 kg/hr D and 0 kg/hr W 
Stream 2 carries 0 kg/hr P, 0 kg/hr D and 10000 kg/hr W 
Stream 3 carries 0 kg/hr D and 50% W into the washer 
Stream 4 carries 0 kg/hr P 
Stream 5 carries 0 kg/hr P and 0 kg/hr D 
Stream 6 carries 0 kg/hr D and 0 kg/hr W 
Stream 7 carries 0 kg/hr P, 95% of D into the decanter, 5% of W into the decanter 
Stream 8 carries 0 kg/hr P 
Stream 9 carries 0 kg/hr P 

Does a solution exist? Is it unique? 7 



        

    

  

 

 

  

 

Vector Spaces 
RN• is an example of a vector space 

• A vectors space is a “special” set of vectors 

• Properties of a vector space: 

• closed under addition: 

x, y 2 S ) x + y 2 S 

• closed under scalar multiplication: 

x 2 S ) cx 2 S 

• contains the null vector: 

0 2 S 

• has an additive inverse: 

x 2 S ) (-x) 2 S : x + (-x) = 0 
8 



   

   

   

Vector Spaces
 

• Is this a vector space? 

{(1, 0), (0, 1)} 

• Is this a vector space? 

{y : y = �1(1, 0) + �2(0, 1); �1, �2 2 R} 

• Is this a vector space? 

{y : y = �1(1, 1, 0) + �2(1, 0, 1); �1, �2 2 R} 

9 



Vector Spaces

• Is this a vector space?

• Is this a vector space?

• Is this a vector space?

10

{(1, 0), (0, 1)}

{y : y = �1(1, 0) + �2(0, 1); �1,�2 2 R}

{y : y = �1(1, 1, 0) + �2(1, 0, 1); �1,�2 2 R}



    

    

   

        

   

 

   
   

Vector Spaces 
•	 A “subspace” is a subset of a vector space 

•	 It is still closed under addition and scalar multiplication 

•	 It still contains the null vector 

•	 For example, R2 is a subspace of R3 

•	 Is this a subspace? 

{y : y = A((3, 0) + (0, 1)); A1, A2 2 R}
 
M•	 The linear combination of a set of vectors: 

y = 
X 

Aixi
 

i=1
 

•	 The set of all possible linear combinations of a set of 
vectors is a subspace: 

span{x1,x2, . . . ,xM }
M

= {y 2 RN : y = 
X 

Aixi; Ai 2 R, i = 1, . . . ,M}
i=1 

11 



  
         

                                              
             

     

Linear Dependence
 

•	 If at least one non-trivial linear combination of a set of 
vectors is equal to the null vector, the set is said to be 
linearly dependent. 

•	 The set {x1,x2, . . . ,xM } with 
xi 2 RN is 

linearly dependent if there exists at least one Ai = 06
such that: 

MX 
Aixi = 0  

i=1 

•	 If M > N, then the set of vectors is always dependent 

12 



        

  

                   
                                  

Linear Dependence 
• Example: are the columns of I linearly dependent?
 

1

A
1
0
0
 

0

@
  1 +
 

1

A
0
1
0
 

0

@
  2 +
 

1

A
0
0
1
 

0

@
  3
 =
 

0

@


1

A

 1


 2
 = 0 
  
 3
 

• Example: are these vectors linearly dependent?
 
0
 1

A
,
 

0

@
 
-1
 
2
 
-1
 

1

A
,
 

0

@
 

1

2
 0
 

@
 A
-1
 
0
 

-1
 
2
 

• In general, if 
Ax = 0 has a non-trivial solution, then the 


vectors
 (A
c 
1
 A
c 

2
 . . .  A
cM
)
 are linearly dependent.
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Linear Dependence 
•	 Uniqueness of solutions to: 

Ax = b 

•	 If we can find one vector for which: 
Ax = 0 , then a
 

unique solution cannot exist.
 

•	 Proof: 
H P• Let 

x = x + x , and 
Ax

H = 0  while 
Ax

P = b
 
H	 H P•	 If x 6= 0 , 

x = cx + x is another solution. 

•	 Therefore, 
x cannot be unique. 

•	 Uniqueness of solutions requires the columns of a matrix 
be linearly independent! 

• (A1 
c 
A2 

c . . .  AM
c )x H = 0  only if 

x H = 0  

•	 If a system has more variables than equations, then a 
unique solution cannot exist. It is under constrained. 

14 



  
   

                 

Linear Dependence 

•	 The dimension of a subspace is the minimum number of 

linearly independent vectors required to describe the 

span:
 

S = span{(1, 0, 0), (0, 1, 0), (0, 0, 1)}, dim S = 3  

S = span{(1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 2)}, dim S = 3 
  

•	 Example: can 
Ax = b have a unique solution? 

0 
1 4 0

1
 

2 5 7 
  
A	 =

B CB
3 6 8

C@	 A 

0 7 9  
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Linear Dependence 

•	 The dimension of a subspace is the minimum number of 

linearly independent vectors required to describe the 

span:
 

S = span{(1, 0, 0), (0, 1, 0), (0, 0, 1)}, dim S = 3  

S = span{(1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 2)}, dim S = 3 
  

•	 Example: can 
Ax = b have a unique solution? 

0 
1 4 0

1
 

2 5 7 
  
A	 =

B CB
3 6 8

C@	 A 

0 7 9  
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Four Fundamental Subspaces 
A 2 RN⇥M
 

• Column space (range space): 

R(A) = span{A
1,A2, . . . ,A
c
M


c
c
 }
 

• Null space: 

N (A) = {x 2 RM : Ax = 0} 

• Row space: 

R(AT ) = span{Ar 
1,A2

r , . . . ,Ar 
N } 

• Left null space: 

N (AT ) = {x 2 RN : AT 
x = 0} 

17 



       

               
 

              
      

                            

Column Space
 
A 2 RN⇥M R(A) = span{A
1,A2, . . . ,A

c
M


c
c
 }
 

•	 The column space of A is a subspace of RN 

•	 Vectors in R(A) are linear combinations of the 
columns of A 

•	 Existence of solutions: 

•	 Consider: 
Ax = b 

MX 
xiA

c = bi
 
i=1
 

•	 If x exists, then b is a linear combination of the 
columns of A. b 2 R(A) 

•	 Converse: if b 2/ R(A), then x cannot exist 

18 



                 

  

                      

                      

Existence of Solutions
 
A 2 RN⇥M R(A) = span{A
1,A2, . . . ,A

c
M


c
c
 }
 

• Solutions to 
Ax = b exist only if b 2 R(A) 

• Example: 0 
1 0 0

1 

• Does a solution exist with A = 0 0 0 
@ A 

0 0 0  

0 
1 

1 

• If b = 0 ?@ A 

0 

0 
0 

1 

• If b = 1 ?@ A 

0 
19 



                 

  

                      

                      

Existence of Solutions
 
A 2 RN⇥M R(A) = span{A
1,A2, . . . ,A

c
M


c
c
 }
 

• Solutions to 
Ax = b exist only if b 2 R(A) 

• Example: 0 
1 0 0

1 

• Does a solution exist with A = 0 0 0 
@ A 

0 0 0  

0 
1 

1 

• If b = 0 ?@ A 

0 

0 
0 

1 

• If b = 1 ?@ A 

0 
20 



  

 

 

                   

 

Existence of Solutions
 

• Does a solution exist? 

separator, 2:1 
3 kg/s 

1.1 kg/s 

? 

? 
• Example:
 

0
 1

A
 
✓


x1

◆
 

= 
x2 

0

@
 

1

1 1 
  3
 

@
 �2 1 
  
1 0 
  

A
0
 
1.1
 

• What is the column space?
 

• 

21 

• Is b 2 R(A) ?
 



 
    

         

   

          

 

                                

Null Space 
A 2 RN⇥M 

• The set of all vectors that are transformed into the 

null vector by A is called the null space of A
 

N (A) = {x 2 RM : Ax = 0} 

• The null space is a subset of RM 

• Not the same as R(A) 

• 0 is in the null space of all matrices but is trivial 

• Uniqueness: 

• Consider two solutions 
Ax = b, Ay = b 

• Such that 
A(x � y) = 0  

• If dim N (A) = 0  , then x � y = 0, x = y 

• A unique solution exists 
23 



Null Space
• Example:

• A series of chemical reactions:

• Conservation equation:

• Steady state:

• Null space of the rate matrix:

• What is this subspace geometrically?
24

systems of linear equations 41

• For a matrix in CN⇥N , the secular equation is a polynomial of degree
N. There are N roots and thus N eigenvalues.

• Like the roots of a polynomial, the eigenvalues need not be distinct.
The eigenvalues of the identity matrix are all unity, for instance.

• Eigenvalues may be real or complex valued.

• If a matrix belongs to RN⇥N , any complex eigenvalues will appear as
conjugate pairs. That is, for each complex eigenvalue, l, its complex
conjugate, l̄, is also an eigenvalue.

• For a matrix A 2 CN⇥N , det(A) = l1l2 . . . lN .

• For a matrix A 2 CN⇥N , tr(A) = l1 + l2 + . . . lN .

An example

Consider the reaction network:

A
k1�! B

k2 !
k3

C
k4 !
k5

D.

If the reaction takes place in a well mixed, batch vessel, then the rate of
change of concentration of each species is

d
dt

0

B

B

B

@

[A]

[B]

[C]

[D]

1

C

C

C

A

=

0

B

B

B

@

�k1 0 0 0
k1 �k2 k3 0
0 k2 �k3 � k4 k5

0 0 k4 �k5

1

C

C

C

A

0

B

B

B

@

[A]

[B]

[C]

[D]

1

C

C

C

A

.

When the reaction reaches its steady-state (d/dt[⇤] = 0), the rate equa-
tion is simply:

0

B

B

B

@

�k1 0 0 0
k1 �k2 k3 0
0 k2 �k3 � k4 k5

0 0 k4 �k5

1

C

C

C

A

0

B

B

B

@

[A]

[B]

[C]

[D]

1

C

C

C

A

= 0 or 0

0

B

B

B

@

[A]

[B]

[C]

[D]

1

C

C

C

A

,

There must be a non-trivial solution for the steady concentrations – an
eigenvector corresponding to an eigenvalue of zero. The eigenvalues of
the rate matrix are given by the secular equation:

0 = det

0

B

B

B

@

�k1 � l 0 0 0
k1 �k2 � l k3 0
0 k2 �k3 � k4 � l k5

0 0 k4 �k5 � l

1

C

C

C

A

(2.52)

= l(l + k1)
h

l

2 + (k2 + k3 + k4 + k4) l + k2k4 + k2k5 + k3k5

i

,

which has the obvious roots l = 0 and l = �k1 as well as two other
roots. Therefore l = 0 is indeed a root. Because the determinant of
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When the reaction reaches its steady-state (d/dt[⇤] = 0), the rate equa-
tion is simply:
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There must be a non-trivial solution for the steady concentrations – an
eigenvector corresponding to an eigenvalue of zero. The eigenvalues of
the rate matrix are given by the secular equation:
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There must be a non-trivial solution for the steady concentrations – an
eigenvector corresponding to an eigenvalue of zero. The eigenvalues of
the rate matrix are given by the secular equation:
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= l(l + k1)
h

l

2 + (k2 + k3 + k4 + k4) l + k2k4 + k2k5 + k3k5

i

,

which has the obvious roots l = 0 and l = �k1 as well as two other
roots. Therefore l = 0 is indeed a root. Because the determinant of
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a matrix is equal to a product of its eigenvalues, the rate matrix is
singular. Physically, this must be the case since conservation of total
mass relates individual species rate equations. They are not linearly
independent.

To the eigenvalue of zero, there is a corresponding eigenvector that
describes the chemical engineer’s intuition: at steady state, [A] = 0
as it is depleted by only forward reactions, while [B], [C] and [D]
obtain non-zero values set by the equilibrium of the reactions between
these species. This eigenvector is a set of non-zero concentrations that
belongs to the null space of the reaction rate matrix. This set may be
determined by assuming [D] = 1 and performing back substitution to
determine the concentrations of the other components. The family of
non-zero vectors satisfying steady-state condition is

0

B

B

B

@

[A]

[B]

[C]

[D]

1

C

C

C

A

= c

0

B

B

B

@

0
(k3/k2) (k5/k4)

k5/k4
1

1

C

C

C

A

. (2.53)

where c is an arbitrary scalar that is determined by a total mole bal-
ance on the steady-state. Because the stoichiometric relationships
between the components of the network is 1, the final number of
moles in the vessel must match the initial number. Equivalently,
c[0 + (k3/k2)(k5/k4) + (k5/k4) + 1] = N0/V, where N0 is the initial num-
ber of moles in the vessel and V is the vessel’s volume. Thus,

c =
N0

V[1 + (k5/k4)(1 + k3/k2)]
.

2.5.1 Eigenvalue decomposition

For an eigenvalue li of a matrix A 2 CN⇥N , the null space of A� liI

is
N (A� liI) =

n

wi 2 CN : (A� liI)wi = 0
o

. (2.54)

This null space is also called the “eigenspace” for li. It spans the
eigenvectors associated with this eigenvalue. If li is a distinct root of
the secular equation, then dim N (A� liI) = 1. If li is a multiple root:

p(l) = . . . (l � li)m . . . = 0, (2.55)

it is said to have algebraic multiplicity m. The dimension of N (A �
liI) is termed the geometric multiplicity and reflects the number of
linearly independent eigenvectors associated with this eigenvalue. The
geometric multiplicity is always greater than zero and less than m + 1.
When the two coincide for all of the eigenvalues of A, the matrix is
said to have a complete set of linearly independent eigenvectors.
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Matrix rank

The rank of a matrix, A 2 CN⇥M, is denoted r and defined as the
dimension of its column space:

r = dim R(A). (2.46)

The dimension of the null space is necessarily r � M:

dim N (A) = r � M.

If the rank of a matrix equals the number of columns in the matrix,
r = M, the dimension of the null space is zero. Such a matrix is said
to be full rank. The rank of a matrix can be determined by reducing it
to row-echelon form: A ! U . This is done by following the Gaussian
elimination procedure with pivoting. The row-echelon form matrix, U ,
will have the structure:

. (2.47)

A square, non-singular matrix in CN⇥N , has rank r = N. The matrix
is singular if r < N – the columns of the matrix are linearly dependent.
A matrix in CN⇥M is termed rank deficient if r  min(N, M). Likewise,
when r < M, solutions, if any exist, are not unique.

Row space and left null space

The row space of a matrix A 2 CN⇥M is defined as the column space
of AT : R(AT). If A has rank r, the dimension of the row space of A
is also r. The left null space of A is the null space of AT : N (AT). The
dimension of the left null space is N � r. Note that

R(AT) ⇢ CM ,

and
N (AT) ⇢ CN .

The column space and left null space of A are subsets of the same
vector space CN .

The column space and left null space are termed orthogonal compli-
ments. Likewise, the row space and null space of A are subsets of CM

and are also orthogonal compliments. The orthogonal compliment of a
subset S is a subset S?. By definition, every vector v 2 S is orthogonal
to every vector v? 2 S?: v · v? = 0.

   

   

Matrix Rank
 
A 2 RN⇥M 

• Rank of a matrix is the dimension of its column space
 

r = dimR(A) 

• Finding the rank: transform to upper triangular form 
A ! U


0 

B

B

B

B

B

B

B

B

B

B

B

@
 

U11 U12 . .  .  U1r U1(r+1) . .  .  U1M 

0 U22 . .  .  U2r U2(r+1) . .  .  U2M 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

U =
 

1
 

C

C

C

C

C

C

C

C

C

C

C

A
 

0  

0  

0  

0  

.  .  .  

.  .  .  

Urr 

0 

Ur(r+1) 

0 

. .  .  

.  .  .  

UrM  

0 

0  0  .  .  .  0  0  .  .  .  0  

0  0  .  .  .  0  0  .  .  .  0  

• Rank nullity theorem: 

dim N (A) =  M � r 
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Existence and Uniqueness
 

A 2 RN⇥M
 

• Existence: 

• For any b in Ax = b 

• A solution exists only if r = dimR(A) = N 

• Uniqueness: 

• A solution is unique only if dim N (A) = 0 
  

• Equivalently when r = dimR(A) = M 

26 
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