10.34 Numerical Methods Applied to Chemical Engineering Fall 2015

Homework #1: Linear Algebra

Problem 1. (30 points)

1. Develop a MATLAB function to perform Gaussian elimination (without pivoting) on the
System
Ax =Db,

where A is a N X N matrix for which the only non-zero elements are A;; ;) = a; with
|j| < M < N. Here, A;(;1j) denotes the it" row and (i + j)** column of A, a; is the value
stored on the jth diagonal of A, and b is a full N x 1 vector. Note that A is a particular
type of banded matrix: a Toeplitz matrix with bandwidth M.

Your function should take as input, the values of N and M as well as a vector a storing the
values on the diagonals: a;j, j = —M, —(M —1),..., M —1,M and b. Use a single N x 2M +1
array to represent the matrix A as it is transformed by the elimination procedure. The idea
of this problem is to have you code the detailed algorithm yourself; for this part, do not use
any built-in MATLAB functions for matrix factorization. To show your function works, apply
it to the linear system described in part 2 with M = 3 and check the result.

2. Apply your function to solve a linear system of equations with a; = —1/4,—-1/4,1,-1/4,-1/4
for j = —M,—1,0,1, M and zero otherwise for various values of M € (2,100). Set N = M?2.
In all cases, let b = 1 (which is a vector whose components are each equal to 1). Record
the solution time for your Gaussian elimination algorithm developed in previous part using
the tic and toc commands in MATLAB. Additionally, construct the same banded matrix
explicitly as a sparse matrix using the MATLAB command spdiags and as a full matrix.
Solve the same system of equations with the sparse and full matrices using the MATLAB
“\” command. Record the solution time with each matrix for various values of M € (2,100).
Plot all the solution times and discuss the results.

3. Discretization of partial differential equations converts them into equations involving parse,
banded matrices such as A. In this case, the quantity 1/M is a proxy for spatial resolution of
the discretization. Often, large values of M are preferred since these enhance the resolution
of the numerical solution and minimize numerical errors. For each solution method systemat-
ically try values of M larger than 100 until the method fails to execute. Use these numerical
experiments to estimate the value of M at which each method fails. Use your timing results
to estimate how the CPU time required scales with M for large values of M. Discuss your
results.

4. Use the built-in MATLAB function “pcg” to construct an approximate solution to the system
of equations with relative error 1078, Note, we will discuss such iterative methods in class in
another week. Use the sparse matrix representation of A and the same b. Record and plot the
solution time for various values of M € (2,100). Compare this with the solution times of your
other methods. Approximate solvers such as “pcg” utilize the product of the matrix A with
different vectors to iteratively refine an approximation for the solution of the system of linear
equations. If this method required no additional storage beyond the sparse representation of



A and the vector b, estimate the value of M at which the storage requirements exceed your
computer’s available memory. Extrapolate from the solution times you recorded to estimate
how long it would require to solve a system of equations that large.

Problem 2. (20 points)
Feel free to use all the features of MATLAB for this problem. Consider the chemical reaction
network:

ABM BB
BRchphp

where each reaction is irreversible and elementary. The dynamics of this network in a batch reactor
at constant volume and temperature are described by the system of differential equations:

dc
E(t) = Sr(t), Vt, (1)
r(t) = Kc(t), Vi, (2)
c(0) = co, 3)
where:
CA(t)
CB(t)
ct)=| cc(t) | eR®
CD(t)
CE(t)

(1)

(1)
r(t) = | rs(t) | €R®

(1)

(t)

is the vector of reaction rates or fluzes at time ¢, S € R>*® is the stoichiometry matrix for the
reaction network, K € R°*? is the matrix defining the fluxes in terms of the concentrations and
co € R is the vector of initial concentrations.

1. Program the matrices S and K in MATLAB and display them (you will need to declare the
reaction rates ki, ..., ks as symbolic variables using MATLAB’s Symbolic Math Toolbox).
What are the ranks of S and K7 Is either one rank deficient?

What does the irreversibility of the reactions tell you about the possible fluxes at any time?
Characterize the null spaces of S and K in terms of a dimension and a basis.

What does your analysis tell you about the possible fluxes at steady state?

What does your analysis tell you about the possible concentrations at steady state?

N T

Characterize the left null space of S in terms of a dimension and a basis.



8. Multiply Eqn. (1) from the left by an arbitrary nontrivial left null vector. What does this
tell you about the time evolution of certain weighted sums of the concentrations? Given your
characterization of the left null space of S, can you provide a physical interpretation for this
particular reaction network?

9. Does this give you new information about the possible concentrations at steady state?

10. Characterize the left null space of K in terms of a dimension and a basis. What does this
tell you about the time evolution of the fluxes? Can you provide a physical interpretation for
this particular reaction network?

11. Characterize the column spaces of S and K in terms of a dimension and a basis. Use these
results to characterize the column space of SK.

12. The solution of the differential equations can be written as the equivalent integral equations:
T
c(1)=co +/ SKc(t) dt.
0

Use your analysis to characterize a set within which all solutions of the differential equations
must lie.
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