
10.34 Numerical Methods Applied to Chemical Engineering Fall 2015

Homework #9: Monte Carlo Methods

Problem 1 (10 points).
Caution: read the entire problem statement carefully before you attempt to structure a response;
there is important information throughout!

When heated in air, most fuels form hydrogen peroxide (HOOH), which accumulates to a
somewhat high concentration before ignition. One reason ignition is so sudden is that above the
ignition temperature (about 1200 K), the HOOH decomposes, forming a large concentration of very
reactive OH radicals. The ignition temperature is very sensitive to the rate at which the HOOH
decomposes, which in the gas phase is usually limited by the rate at which the thermal bath can
supply energy for this endothermic reaction through collisions. That is, the rate-limiting step is:

HOOH + M→ OH + OH + M

where M stands for any collision partner (i.e., any other molecule in the system). Experimentally,
some collision partners are much more effective than others at transferring energy to HOOH, but
no one knows exactly why. One theory proposes that the dipole moment of HOOH allows energy
transfer over long distances, but other researchers have suggested that the dipole moment of HOOH
is actually very small at these high temperatures, where it is vibrating violently.

In this problem, your task is to estimate the average magnitude of the dipole moment, 〈‖µ‖〉,
of HOOH at 1200 K, based on a molecular mechanics potential energy expression for HOOH and
for the charges on the H and O atoms. Note the dipole moment is a vector quantity:

µ =
∑

qi(ri R
i

− cm),

where ri is a vector specifying the (x, y, z) position of the ith atom and qi is the atom’s charge. The
vector Rcm is the (x, y, z) position of the center of mass:

Rcm =

∑
imiri

i

∑ ,
imi

where mi is the mass of the th atom.
We do not care about the direction of the dipole vector, only its magnitude ‖µ‖ (2-norm).
The symbol “〈·〉” refers to the Boltzmann average over all possible molecular geometries; in the

classical limit and neglecting some minor complications due to the integral over the kinetic energy
we can write:

1〈‖µ‖〉 =
Q

∫
· · ·
∫

exp

(
−V (r1, . . . , rN )

)
k

)
1

T
‖µ(r , . . . , rN ‖d3r1 . . . d3rN ,

where Q is the classical partition function:

Q =

∫
· · ·
∫ (

V (r ,− 1 . . . , rN )
exp N

k

)
d3r1 . . . d

3r .
T

Write a set of functions that use the Metropolis Monte Carlo integration method to
compute 〈‖µ‖〉 at T = 1200 K. You should report the following:
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1. The value you obtain for 〈‖µ‖〉 and the number of Monte Carlo steps attempted and accepted.

2. Your best guess at the variance in ‖µ‖ and the uncertainty in your predicted value of 〈‖µ‖〉.
Explain how you derived these.

3. A plot of the probability density p(‖µ‖) of observing an HOOH molecule with a dipole moment
of magnitude ‖µ‖. Hint: You may find the MATLAB routine hist helpful here.

An expression for the potential, V , and related information are as follows:

1
V (r) = VOH(RO1H1) + VOH(RO2H2) +

2
kOO(‖ROO‖ − LO)2+

1
k 2
θ (θHOO θ0)

2 + (θOOH θ0) + Vφ(θHOO, θOOH , φ),
2

where

(
− −

)

VOH(r) = DOH (1− exp (−α(‖r‖ − 2LH))) ,

Vφ(θHOO, θOOH , φ) = (2× 10−20J)(1 + cos(θHOO))(1 + cos(θ 2
OOH))(cos(φ)− cos(φ0)) .

Rij is the vector between atoms i and j (so ‖Rij‖ is the Cartesian distance between atoms i and
j). θHOO is the angle defined by H1-O1-O2. θOOH is the angle defined by O1-O2-H2 (hint: law
of cosines). φ is the dihedral angle, the expression for which depends on your choice of axes; an
expression for molecular-fixed axes is given at the end of the problem statement.

The charges on the atoms depend on the OH bond lengths, and are given by:

q(r) = −0.25 exp (−α(‖r‖ − LH)),

qH1 = −qO1 = q(RH1O1),

qH2 = −qO2 = q(RH2O2).

The values of q are given in units of the charge of an electron (a negative number with the normal
sign convention for charge). It is customary to report molecular dipole moments in units of Debye.
System parameters:

DOH = 6× 10−19 J

LH = 1.05× 10−10 m

LO = 1.6× 10−10 m

k 2
OO = 300 J/m

k = 1.1× 10−18 2
θ J/rad

α = 1.5× 1010 m−1

φ0 = 1.7 rad

θ0 = 1.8 rad

Note that it is very easy to figure out the equilibrium geometry from the analytical expression for
the potential (V = 0 at the equilibrium geometry). Use this equilibrium geometry to compute
〈‖µ‖〉 for T = 0 K. When you begin the Metropolis MC integration, start your Monte Carlo steps
from the equilibrium geometry.

Hint: You can use molecule-fixed axes to reduce the dimensionality of your model. Molecular
potentials do not depend on the position of the molecule in space, nor on its orientation, but only
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on the relative position of the atoms. Hence, one can usually cut six degrees of freedom (three
corresponding to the position of the molecule and three corresponding to its angular orientation—
the Euler angles) out of molecular problems. In this particular problem, we suggest using molecule-
fixed axes where the position of atom O1 sets the origin, atom O2 lies on the x axis, and atom H1

lies in the x-y plane. In this way, one can remove these 6 degrees of freedom from the problem:
xO1 , yO1 , zO1 , yO2 , zO2 , zH1 (that is, these can all be set equal to zero).

When you remove these orientational degrees of freedom you pick up some Jacobian volume
elements in the integrals for 〈‖µ‖〉 and Q (approximating away some minor terms):

1〈‖µ‖〉 =
Q

∫
· · ·
∫

(xO2)2|yH1 | exp

(
−V (x)

µ(x) d6x,∫ ∫ kT

)
‖ ‖

Q = · · · (xO2)2|yH1 | exp

(
V (x)−

)
d6x,

kT

where the vector x contains the non-zero (x, y, z) coordinates of all the atoms. In this molecule-fixed
coordinate system, the dihedral angle is given by

yH
cos(φ) = 1yH2√

|yH1 | (yH2 )
2 + (z 2

H2 )

Problem 2 (10 points). Consider a simple system with a single particle that can be in any one of 

5 boxes. This situation is shown in Figure 1.
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Figure 1: A simple system with a single partical that moves between five boxes.

Suppose that the energy of the system when the particle is in each box, E1, . . . , E5, are known
and satisfy

E1 > E2 > E3 > E4 > E5.

Suppose further that the probability of being in box i, p(i), satisfies

p(i) ∝ exp(−Ei/kT ).

You decide to compute an approximation of the PDF p using a Markov process. In each step of
your simulation, the particle is initially in box i. First, you select a neighboring box at random
(with equal probability). Next, you decide whether or not to accept a move to this neighboring
box using the acceptance criterion of Metropolis. A typical simulation of this type results in the
histogram in Figure 2.

1. Does it make physical sense that p should look like the histogram in Figure 2? Explain why
or why not.
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Figure 2: Typical results from Markov process simulation. For each box i, the height of the bar
indicates the number of times the configuration where the particle is in box i was visited during
the simulation.

2. Analyze the transition probabilities of the Markov process described by the algorithm above.
In your report, use the transition probabilities to argue either that the simulation is flawed,
or that it is guaranteed to give the correct results.

3. Suggest a second definition of the transition probabilities that leads to a valid simulation and
justify your choice. If you believe that the original simulation results are incorrect, explain
how your new transition probabilites correct the problem.

4. Suppose that the system described in Figure 1 is being used to model a one dimensional
diffusion process. Clearly, it is not physical for a particle to diffuse from box 2 to box 4 without
first passing through box 3. Now consider a Markov process with transition probabilities that
allow moves between non-neighboring boxes with nonzero probability. Can such a Markov
process be used to approximate p? Explain your answer on physical grounds.

jks: November 23, 2011
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