10.34: Numerical Methods

Applied to
Chemical Engineering

Lecture 6:
Singular value decomposition
Iterative solutions of linear equations



Recap

® FEigenvalues
® FEigenvectors

® FEigendecomposition



Recap
d2
® Find the eigenvalues and eigenfunctions of: —

2 dx?
5y =2y, y(0)=0,y(L) =0



Recap
d2
® Find the eigenvalues and eigenfunctions of: ——
P dx
= A 0)=0,y(L)=0
3y =2y, y(0)=0,y(L)
Yy = Cleﬁx + 026—\/Xa;
y = C7 cos(vV—Ax) + C5sin(v —\x)
y(0) =0 = Ci =0

L) =0 VA= nez

27n\ ° . [ 2mn
)\n — — (T) Yn — (' sin (Til?)




Recap

® Energy balance for an elastic column:

® Beyond what value of the pressure, PP, will an elastic
column buckle?




Singular Value Decomposition

® |s there an “eigendecomposition” for non-square
matrices?! Yes!

e For: A € RV*M
e A=TUXVT
° With:UE(CNXN EERNXM VE(CMXM
e and VI = V7!

® Y. has only diagonal elements which are positive:

211 0 0
3 0 222 O
0 0

¢ U and V are called the left and right singular vectors.



Singular Value Decomposition

® Properties of the singular value decomposition:

¢ Uand V are unitary matrices
e UU' =1, VVI =1

e ATA = (UZVHIUZVI = VEIZVT
e V are the eigenvectors of ATA
o 2?7; are the eigenvalues of ATA

e AAT=UZVI(UZV") = UZXUT
e U are the eigenvectors of AAT
o 2?7; are the eigenvalues of A AT

® >, are called the singular values of A.



Singular Value Decomposition

® Properties of the singular value decomposition: A = UX V'

o O =

S = O

Some columns of X are zero. The columns of V
corresponding to these span N (A)

Some columns of X are non-zero. The rows of U
corresponding to these span R (A )

Example: 1 0

0 0
A= 0 1 0 0 [U,S,V] = svd(A)
0 0 1 0
! L0 0 1000
0 |=Z=( 01 0 0 |V=
1 0 0 1 0 0010
0 0 0 1



Singular Value Decomposition

® Example:



Singular Value Decomposition

® How is singular value decomposition used?

® Example: data compression/matrix approximation
® |eft: original bitmap

® Right: compressed bitmap retaining only 50 biggest
singular values. All other set equal to zero.



Singular Value Decomposition

® How is singular value decomposition used?
® |Least squares solutionto: Ax = Db

o with A ¢ RVM w c RM p e RN

® | east squares means find the vector X that

minimizes: ¢(x) = [|Ax — b3
e where Ax —b=U(ZVix - U'b)
e Llet y=V'x and p=TU'b
o then ¢(x) = [U(Zy —p)llz = [(Zy — p)lI3

® |et r be the number of non-zero singular values
(also the rank of A ):

® then ¢(x Z|Zzzyz pf,,|2—|— Z |pz‘2

1=r—+1
12



Singular Value Decomposition

® How is singular value decomposition used?

® |Least squares solutionto: Ax = Db

e with A ¢ RVXM « cRM beRY
® and y:VTX p:UTb

® Minimizes:

Z|Ezzyz pil? + Z il

1=r—+1
Pi
244
® Whatabout y; for r+1 < < M?

® Therefore, Y; = for 1 <:<r

® | east squares system is underdetermined

o Justset:y, =0 fortherestandfind x = Vy



Iterative Solutions to Lin. Eqgns.

® Gaussian elimination or eigenvalue decomposition
require O(NS) operations to complete.

® For many problems of practical interest (solutions to
PDEs in particular) [V can be so large that these
calculations are infeasible.

® An alternative approach seeking approximate solutions
to linear equations is more commonly employed.

® These algorithms are based on iterative refinement of an
initial guess.

® For: AX=D
® An iterative map might look like: x;,1 = Cx; 4+ ¢
® The map is converged when: X; 11 = X;

® The converged X; is a solution if:

x; =(I-C) 'c=A"1b 4



Iterative Solutions to Lin. Eqgns.

® Example: solve iteratively

|5



Jacobi Iteration

For:Ax =b
e Split A into D+ R

e D is the diagonal elements of A

e R is the off-diagonal elements of A
Rewrite the equations as an iterative map:
e Dx;,,1 =—-Rx;+Db
e or x;,.1 =D (—Rx; +b)

If the iterations converge, then (D + R)x; = b

® We have found the solution (if map converges)!

Jacobi iteration transforms a hard problem A~ 1b,into
a succession of easy problems, D™
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Jacobi Iteration

e For:Ax =D
e Split A into D+ R
e D is the diagonal elements of A
e R is the off-diagonal elements of A
® Rewrite the equations as an iterative map:
e X;11 =D '(—Rx; +b)
® Does Jacobi converge to the right solution x?
e Substitute:b = Ax
 Then:x;,; —x=-D'R(x; — x)

® T[ake the norm of both sides: ||X7;+1 — XHp

< |[DT'R],
|

HX’i o XHP 7



Jacobi Iteration

® The ratio of absolute error in successive iterates is:

® |f this is less than one, the error gets smaller after
each iteration. The iterative map converges!

® When is |D_1R,H]_D < 17

® Consider the o0-norm of a matrix which gives the
maximum row sum:

ID™'R|oo = max } A7 Ay
L
e ID'R||s <1 when |4ii| > Z Ay
jFi

e A is“diagonally dominant”
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Gauss-Seidel Iteration

For:Ax =Db
e Split A into L+ U
e L is the lower triangular elements of A
e U is the upper triangular elements (no diagonal)
Rewrite the equations as an iterative map:
e Lx,,;1=—-Ux;+Db
e or X;41 =L '(-Ux; +b)
Again, successive calculations of L~ ¢ are easier than A~ 'b

L-'U|, <1

Does Gauss-Seidel converge? Yes fif,

® This happens for diagonally dominant and symmetric,
positive definite matrices (\; > 0).
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Iterative Solutions to Lin. Eqgns.

® Example:

2 -1 0 1
-1 2 -1 X = 0
0O -1 2 0
Xexact — (3/47 1/27 1/4)
e Try Jacobi: x¢9 = (1,0,0)

Xi+1l = D 1 (—RXZ' + b)

e Try Gauss-Seidel: xy = (1,0, 0)

Xi+1l = L 1(—UXZ' -+ b)
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Iterative Solutions to Lin. Eqgns.

® Example:

2 —1 0 1
-1 2 -1 |x=1 0
0 -1 2 0

Xexact — (3/47 1/27 1/4)

® Results
iteration R.E. Jacobi R.E. Gauss-Seidel
I 38% 40%
2 26% 20%
3 19% 10%
5 9.5% 2.5%
10 |.7% 0.08%




Successive Over Relaxation

® For equations that that do not converge under Jacobi/
Gauss-Seidel or any other iterative scheme, there are
ways to modify the procedure to force convergence.

® Suppose we have an iterative map: X;4+1 = f(Xz')

® that gives the sought after solution when X;11 = X;
e the function f(X) need not be linear in general
® We modify the map so that:
® X;4+1 — (1 — w>Xi -+ wf(xi)
® where the correct solution is still given when X;11 = X;
® where w is called the relaxation parameter.

® This new iterative map can damp out any wild
fluctuations from one iteration to the next by
choosing values: () < w < 1 2



Successive Over Relaxation

® When this damping is applied to Jacobi:
® The original iterative map: X;11 = D : (—Rx; + b)
e Becomes:X;+1 = (1 — w)x; + wD ' (—=Rx; + b)

® Matrices that are not diagonally dominant might
converge when w is small enough

® When this dampling is applied to Gauss-Seidel:
® The original iterative map: X;11 = L 1(—Uxi + b)
e Becomes: X1 = (1 —w)x; + wL™'(=Ux; + b)

® The relaxation parameter acts like an effective
increase in the eigenvalues of the matrix. A small
enough value can enable convergence.

® Successive over relaxation might be slow, however.
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