10.34: Numerical Methods

Applied to
Chemical Engineering

Lecture 19:
Differential Algebraic Equations



Recap

e Differential algebraic equations
® Semi-explicit
e Fully implicit

® Simulation via backward difference formulas



Recap

® How suitable are such approaches!?

® Consider stirred tank example I:

d
2 — % (eat) — ealt)
c1(t) = (1)
Apply backward Euler method:
dr|  x(tk) — x(tk—1)
dt t b — b - Otk —tr-1)
c1(tr) = 7(tk)
co(ty) = : (c(t )—I—Q(t —tr_1)c1(t ))
2 (L _1‘|‘%(tk_tk—1) 2(tk—1) + 77 (e = tr—1)r (T

+O((tk — tp—1)?)



Recap

® How suitable are such approaches!?

® Consider stirred tank example 2:

dca @
L CURI0)
ca(t) = (1)

Apply backward Euler method:
ca(tr) = v (tk)

_. Vo (ealty) — ca(tip—1)
c1(tr) = caltr) + 0 (

b — te—1

) 0t~ i)
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Recap

® How suitable are such approaches!?

® Consider the system of DAEs:

ég — (1 (t)
ég — (C9 (t)
0=cs(t) — (1)

Apply backward Euler method:

c3(tr) = v(tk)
c3(tk) — c3(tr—1)

£ —
2(tk) b — tp—1

ca(tr) — ca(tr—1)

{
1) b — tp—1



Recap

® Solution via backward Euler:
® Stirred-tank example |:
® |ocal truncation error: O(At2)
® Stirred-tank example 2:
® local truncation error: O(At)
e DAE example 3:

® |ocal truncation error: O(l)



Recap

® How suitable are such approaches!?

® Consider the system of DAEs:

él — Cq (t) -+ Co (t) —+ C3 (t)
éQ — —(C1 (t) — C9 (t) —+ C3 (t)
0 = C1 (t) -+ Cz(t)

Apply backward Euler method:



Differential Index

® Consider stirred tank example I:

dea @
Pl (c1(t) — ca(t)) (1)
c1(t) = (t) (2)

® How many time derivatives are needed to convert to a
system of independent ODEs having differentials of all the
unknowns?

derivative of (2)

dCl

=) 0

Called an index-1 DAE.



Differential Index

® Consider stirred tank example 2:

dca @

dt ~V

(c1(t) = ca(t)) (D

c2(t) = v(t) (2)

® How many time derivatives are needed to convert to a

system of ODEs!?
dCQ

derivative of (2)

derivative of (3)l

dCl dCQ _ V

it dt Q)

Called an index-2 DAE. ﬁ — KW L Q
it Q' Vv

substitute (1)

: V.
o ) al) =cll) + o7 e

substitute ()

(c1(t) — ca(t)) (4)
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Differential Index

® Consider DAE example 3:
C2 = c1(1) (1)
ég — C9 (t) (2)
0=c3(t) —~(t) G

® How many time derivatives are needed to convert to a
system of ODEs!?

derivative of (3) substitute (2)
c3 =4 — c2t) =7 4
1 substitute (1)
derivativeof (4) ¢ca =% — c1(t) =% (5)

1
derivative of (5) ¢; = 77 (6)
Called an index-3 DAE.
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Differential Index

® The differential index of a semi-expicit DAE system is defined as
the minimum number of differentiations required to convert the
DAE to a system of independent ODEs.

dg
0= = = gl v 1
=8 (xX,y,y,t)
dx dzg
—_— = O — - — (2) 3 t
=y 5 =8 (XY, V1)
0=g(x,y,t)
solve for:
d
v _ s(x,y,1)

dt



Differential Index

® Consider another example:

c1 = c1(t) + ca(t) + e3(t)
Co = —ci1(t) — ca(t) + c3(?)
OZCl(t) Cg(t)

® How many time derivatives are needed to convert to a
system of ODEs!?

12



0 —

Differential Index

® The differential index of a semi-expicit DAE system is defined as

the minimum number of differentiations required to convert the
DAE to a system of ODEs.

dx
|
® Index-l example: dt £y, 8) ()

0=g(x,y,t))

derivative of (2) rearrange and substitute (I)
d_g:f)’gdx I 0g dy I 0g _}6‘gdy: agf(x,y,t) og
dt oxdt Oydt Ot 0y dt ox ot

If d_g is full rank then the DAE is index-|:
y

d_y og Og x.y.1) - 0g
dt dy Ox YU o
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Differential Index

® Example, determine the differential index:

c1 (1) co(t) ca(1)
Cg(t)
dea Q1
pr — Vl(cl(t) — c2(1))
des (1 Q)2 Q1 + Qo
= VQCQ (t) Ve c3(1) 7 ca(?)
ci(t) = v1(t)
c3(t) = y2(t)
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Differential Index

® Example, determine the differential index:

c1(¢) co(1) c4 (1)
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Differential Index

® Example, determine the differential index:

c1(¢) co(1) c4 (1)
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Dynamics of DAE Systems

® Solution of stirred tank example I
c2(t) = c2(0

index | ¢q1(t) = ~(t)
i /

—(Q/V)t
—(Q/V)(t t") ¢’
® Solution of stirred tank example
index2  c1(t) =v(t) + =~ co(t) = v(t)

® Solution of DAE example 3:

index 3 C1 (t) = v C2 (t) = 7y C3 (t) — 7Y

® Higher index indicates greater sensitivity to changes in

forcing function. -



Dynamics of DAE Systems

® Physical example: pendulum
X = v(t)

mv = —k(t)x(t) + mg
Ix(t)]l3 = L ®

® position, velocity, stiffness: x(t) v(t) k()

® |dentify differential and algebraic variables.

(1) V(1) k(1)

o Identlfy index of the DAE system.
(I)—HX I3 = 2v(8) - x(t) = 0
(2) S v(t) - x(8)) = ~ (~k(Ox(t) + me) - x(t) + V()3 =0
(3) 4 (i ~(tpx(t) + mg) - x(0) + V()] )

1 dk 1 2




Simulation of DAE Systems

® Consider DAE example 3:

6.2 = (1 (t) él — 7
C3 = Cg(t) — Co =7y
0 = cs(t) — () C3 =1

® C(Can’tl just solve the set of ODEs found when determining
that the DAE system is index-3?

19



Simulation of DAE Systems

® In general,index-1 semi-explicit DAEs can be safely handled
by certain stiff integrators in MATLAB (odel 5s, ode23t)

® For generic DAEs, specific DAE solvers are usually needed
(SUNDIALS, DAEPACK)

® |nitial conditions for such equations must be prescribed
consistently, or numerical errors can occur.

® Consider the pendulum:
e Can it’s initial position be specified arbitrarily?
e Can it’s initial velocity be specified arbitrarily?

® Can the initial stiffness be specified arbitrarily?
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Simulation of DAE Systems

e Consistent initialization of initial value problems: {x(0), x(0)}
e index-0 DAE (ODE-IVP): x = f(x,t)
e |.x(0)— x(0)=1f(x(0),0)
e 2 %(0) solve x(0) = f(x(0),0)
e 3.¢c(x(0),%(0)) = 0 solve with X(0) = £(x(0), 0)
o fully implicit DAE: f(x,%,t) = 0
® 2N unknowns for N equations
® apparently N degrees of freedom to specify
® hidden constraints reduce these degrees

e with differential states X and algebraic states vy,

f(x,x,y,t) =0 {%(0),x(0),y(0)} 21



Simulation of DAE Systems

e Consistent initialization, example stirred tank |:

d
% — % (c1(t) ca(t)) (1)
Convert to system of ODEs
dC1 .
— = (1)
d
22 _ % (ar(t)  ea(t) @)

Consistent initial conditions:

constrained by

con.strained. by differential equation (3) .
algebraic equation (2) O unconstrained

c1(0) =7(0)  €2(0) = 77(e1(0) —e2(0))  2(0) = co
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Simulation of DAE Systems

e Consistent initialization, example stirred tank 2:

dCQ Q

— = lalt) —e(t) ()
c2(t) = (1) 2)
Convert to system of ODEs
dco :
=7 (3)
dCl V ..

_ Q@
i — o) 7 (e1(t) — ea(?))
Consistent initial conditions:

constrained by od b
constrained by differential equation (1) Jiff con§t||~a|ne 4 3
algebraic equation (2) ifferential equation (3)

e(0) = (0) 0 =00+ 7F&0) &(0)=4(0)



Simulation of DAE Systems

® Consider another example:
él — C1 (t) -+ Co (t) —+ C3 (t)
62 — —(C1 (t) — C9 (t) —+ C3 (t)
0= Cq (t) Co (t)

® Derive consistent initial conditions:
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Simulation of DAE Systems

® Consider another example:

él — Cl(t) —|—CQ( )—|—63( )
Cy = —c1(t) — ea(t) + e3(2)
Ozcl(t)—I—CQ( )—I—QCg()

® Derive consistent initial conditions:
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