10.34: Numerical Methods

Applied to
Chemical Engineering

Lecture 7/:
Solutions of nonlinear equations
Newton-Raphson method



Recap

® Singular value decomposition

® |terative solutions to linear equations



Recap

® |terative solutions to linear equations
e Given: Xg
® lterateon:x; 1 = Cx; +cC

e Until converged to solution of: AX = b

® Assume the iterations converge. When should | stop!?



Systems of Nonlinear Eqgns.

e Formally: f(x) =0

e where:x € RY

e where: f : RY — RY

® X are called the roots of f(x)

® linear equations are represented as f(x) = Ax — b
® Common chemical engineering examples include:

® Equations of state

® Energy balances

® Mass balances with nonlinear reactions



Systems of Nonlinear Eqgns.

® Example: van der Waals equation of state
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e P, I', ¥ arereduced pressure, temperature, and
molar volume
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® Given pressure and temperature, there are -3 molar
volumes that satisfy the equation of state.



Systems of Nonlinear Eqgns.

® Example: van der Waals equation of state

n 1 n
AR
D2 3 3

® Given pressure and temperature, |, 2 or 3 solutions
for molar volume possible.

o a3\ [ 1\ 8.

® In general, nonlinear equations can have any number of
solutions. It is impossible to predict beforehand.

® For gas-liquid coexistence, can the pressure and
temperature be specified independently?



Systems of Nonlinear Eqgns.

® Example: van der Waals equation of state

® For gas-liquid coexistence, can the pressure and
temperature be specified independently?

No!

Thermal equil. — same temperature in gas/liquid

A

T =T; =T

Mechanical equil. — same pressure in gas/liquid

A

pG:pszsat

Chemical equil. — same chemical potential in gas/liquid

/ (P(9) — Pyag) do =0

G



Systems of Nonlinear Eqgns.

® Example: van der Waals equation of state

® For gas-liquid coexistence, can the pressure and
temperature be specified independently!?

® Given the temperature, there are 3 unknowns
® The saturation pressure
® The molar volumes of the gas and liquid

® There are three nonlinear equations to solve:
® Equation of state in gas/liquid
® Maxwell equal area construction

A

® Mustsolve: f( Py, 0a,0r) =0



Systems of Nonlinear Eqgns.

® Example: van der Waals equation of state

® Must solve: f( Py, 0, 01) = 0
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Systems of Nonlinear Eqgns.

® Example: van der Waals equation of state
A 1 VL A
o Use P = — - P(0)d0 to eliminate Pyyy
from: UL = VG Jig
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f2(dq,0r) =0




Systems of Nonlinear Eqgns.

Given: f : RY — RY

Find: x* € RY : f(x*) = 0

® There could be no solutions

® Therecouldbe 1 < n < oo locally unique solutions
® There could be oo solutions

A solution, X, is locally unique if there exists a ball of finite
radius such that X" is the only solution within the ball.

Consider the simple function:

(floem) )



Systems of Nonlinear Egns.

( f1(z1,72) > —0 L L2
fa(x1,22)

fo(z1,22) =0
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Systems of Nonlinear Egns.

( f1(z1,72) > —0 L L2
fa(x1,22)

tangént curves, poteptially
fi(z1,22) =0 -
not locally unique

< >

locally unigue solUtiqn

fo(z1,22) =0




Systems of Nonlinear Eqgns.

® Inverse function theorem:
o If f(x*)=0and detJ(x™) #0,

X . . .
® then X' is a locally unique solution,

® where the Jacobian is: 0fi  9Oh 0f1
8331 63:2 t U 833

Ofz  Of2 O fo
ox ox "t Ox

Jx) =1 " a

Ofn  OfnN Ofn

82131 8332 C o aCBN

® The Jacobian describes the rate of change of a vector
function with respect to all of its independent variables.

o If det J(x™) = 0, solution may/may not be locally unique

® Most numerical methods can only find one locally unique
solution at a time.



Systems of Nonlinear Eqgns.

® Example:
e Compute the Jacobian of:

t0 = (712057 )

L1L9

|5



Systems of Nonlinear Egns.

( f1(z1,72) > —0 L L2
fa(x1,22)

tangént curves, poteptially
fi(z1,22) =0 -
not locally unique

< >

locally unigue solUtiqn

fo(z1,22) =0




Systems of Nonlinear Eqgns.

® Inverse function theorem:
e Consider a linear equation: f(x) = Ax — b
® The Jacobian of the function is:

J(x)=A

® The equation: f(x) = 0, has a locally unique solution

when det J(x) = det A # 0

® There is a locally unique solution when A is invertible

® The inverse function theorem is just a generalization of what
we learned in our study of linear algebra.

® In fact, in a neighborhood close to a root of f(x), we can
often treat the function as linear!
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Linearization

® Linearizing |-D nonlinear functions:
o flz+Ax)= f(x)+ f'(v)Az + O(Az?)
e typically valid as Az — 0
® Linearizing generalized nonlinear functions:
o f(x+ Ax)=f(x)+ J(x)Ax + O(||Ax]|3)

o typically valid as || Ax|[3 — 0

® Part of a Taylor expansion for each component of f(x):

8f@(X)
filx+Ax) = fi(x) + ;::1 O Az,
N N
1 ~ —~ (92]‘},()()
— Ax.: A\
* 2 4 @xj(?xk 7 Tk T

19



Iterative Solutions to NLEs

Nonlinear equations, f(x™) = 0, are solved iteratively

The algorithmic map: X;11 = g(X;), is designed so that:

o X =g(x")
® equivalently, X™ is a fixed point of the map, g(x)
Iterations stop when the map is sufficiently converged.
Two common criterion for stopping are:
® Function norm criterion:
If(xiv1)llp <€
® Step norm criterion:

1Xit1 — Xi|lp < €rl|Xit1llp +€a
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Iterative Solutions to NLEs

® Failure of function norm criterion:

A
Lij—1

< —h—_

< €

\4

® Failure of step norm criterion:

e S

X4
€T
< et > T




Convergence Rate

® The rate of convergence is addressed by examining:

S
: Xi+1 — X
lim [ xi+ (Up =
® when the limit exists and is not zero:
e ¢ —=1,C < 1,convergence is linear

e If C = 10" !each iteration is | digit more
accurate than the previous

® g > 1, convergence is super-linear
® ¢ — 2, convergence is quadratic

® The number of accurate digits doubles with each
iteration.

® Jacobi and Gauss-Seidel showed linear convergence rates
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Newton-Raphson Method

e Utilize linear approximations of the function to find a root
iteratively:

f(z)

Li+1 T4 L

fxiv1) = 0= f(x;) + f' (@) (@ig1 — 25)
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Newton-Raphson Method

® When the iterate is sufficiently close to the root,
convergence is guaranteed (local convergence)!

® Extending this idea to systems nonlinear equations is easy:

® Approximate the function as linear:
f(x;01) ~0="F(x;)+ J(x;)(Xs01 — X;)
f(x;11) ~0="Ff(x;)+ J(x;)d;
® Solve for the displacement:
J(x:)d; = —f(x;) = d; = —[J(x;)]H(x5)
e Update the iterate:
Xi+1 = X; + d;

Xit1 = X; — [J(x3)] 7 (%)
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Newton-Raphson Method

® Example: the intersection of circles

Aaj2
0= fi(x1,x2) = (x1 — 2)* + (22 —2)* — 9

0= folxy, x2) = (X1 +3)* + (x2 +1)> = 9

fi(z1,22) =0

fao(z1,22) =0
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Newton-Raphson Method

® Example: the intersection of circles

0= fi(x1,x2) = (31 — 2)* + (x2 —2)* — 9
0= fz(xl,xz) = (x1 +3)2 + (xz + 1)2 —9

J(x)

k ") f(@®) l2® — &V || D),
0 (—1.00,3.00) (1.00,11.0) 11.1

1 (—1.25,1.75) (1.63,1.63) 0.556 2.30

2 (—0.963,1.27) (0.310,0.310) 0.173 0.439

3 (—0.875,1.124) (0.030,0.030) 0.020 0.042

4 (—0.864,1.101) (0.004,0.004) 0.003 0.006
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Newton-Raphson Method

® Example: the intersection of circles

—8 8

det (J(ZB)) =4(x1 —2)(xp +1) —4(xp — 2)(x1 + 3)

® Notice that convergence is slowest near where det J(x) = 0
28
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