10.34: Numerical Methods

Applied to
Chemical Engineering

Lecture 5:
Eigenvalues and eigenvectors



Permutation

® Reordering through use of permutation matrices:

® Consider the operation of swapping two rows. This
can be done through matrix multiplication.

(O 1 0
1 «60—9 ———— swap row | and 2
p=| 0 0 1 0
S identity
\0 00 ... 1)
® For example:
O 1 O L1 L9
1 0 O L — L1
0 0 1 L3 L3



Permutation

® Reordering through use of permutation matrices:

® Consider the operation of swapping two rows. This
can be done through matrix multiplication.

[0 1< 0
1 «60—9 ———— swap row | and 2
p_| 0 01 0
SRR identity
\0 00 ... 1)
[ A
A7
PA=( PA{ PAS ... PAS )=| 4
\ 4§/



Permutation

® Reordering through use of permutation matrices:

® How do | swap columns?

APT = (PAT) '

® Permutation matrices are unitary:
PP’ =1
P’ =P
® Reordering a system of equations:
(P1AP2)(Pyx) = P1b
® Reordering is a form of preconditioning!

® Reordering can be used for pivoting!



Recap

® (Gaussian elimination
® Sparse matrices

® Permutation and reordering



Recap

Example: Plinko:

E source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/faqg-fair-use/.

i AN

1+ 1 112 112

® Derive a sparse matrix model that maps the probability
of the chip location from one level to the next.

Pi—l—l _ APZ


https://ocw.mit.edu/help/faq-fair-use/
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Recap
Pi

O

1 ) )
n :Pn—l/z_l_Pn—l—l/2
/\4

112 112 ]_:)H_1 — APZ

e A=spdiags(ones(N,2)/2, [-1 1], N, N);
e A(1,2)=1; A(N,N-1)=1;

Pi
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Recap
Pi

O

1 ) )
n :Pn—l/z_l_Pn—l—l/2
/\4

112 112 ]_:)H_1 — APZ

e A=spdiags(ones(N,2)/2, [-1 1], N, N);
e A(1,2)=1; A(N,N-1)=1;




Recap

Notice that after many cycles, the probability distribution
becomes “constant” AAAA ... AP,

In fact there are special distributions such that:
(AAP = P
What are examples of those distributions!?

They are called eigenvectors of the matrix: B = A A

Pi



Eisenvalues and Eigenvectors

® The eigenvectors of a matrix are special vectors that are
“stretched” on multiplication by the matrix:

Aw = \w
AcRVHN  weV e C

® The amount of stretch \ is called the eigenvalue
® Finding an eigenvector/eigenvalue involves solving:
e /V equations
® which are nonlinear ( \w )
o for /N + 1 unknowns
® FEigenvectors are not unique:

® |f W isan eigenvector, so is CW

10



Eisenvalues

® Finding eigenvalues:

Aw =) w= (A-)w =0

e ecither w =20

o or w € N(A — AlI) and det(A — A1) =0

® For the right values of A, A — AI is singular!

det(A — AI) = 0 = p™ ()
pN()\) is called the characteristic polynomial.

The N roots of p'* (\) are the eigenvalues of
pY(A) =c(A =N A2 = A) ... (An — A)



Eisenvalues

® Examples:

2.0 0
eA=[ 0 1 0
0 0 3

2\ 0 0
A\ = 0 1-X 0

0 03—\
det(A — AT) = (=2 = \)(1 = A\)(3—\) =0

A=-21,3

® The elements of a diagonal matrix are eigenvalues

(4 )
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Eisenvalues

® Examples:

® The elements of a diagonal matrix are eigenvalues:

(AH—A 0 0 \

0 Ap — A ... 0

0 = det . . | .
Lo 0 ... Awn—A

= (A1 —A) (A —A)...(ANN — A).

® The diagonal elements of a triangular matrix are
eigenvalues too:

[(Au—A  Ap .. A )
0 — dot 0 Axn—A ... A
= e . . .
Lo 0 ... Awn—A

= (A11 —A) (A — A)...(ANN — A).

| 4



Eisenvalues

® Properties of eigenvalues: A € R >

® |Inferred from the properties of polynomial equations!

° pN()\) is a polynomial of degree /N and has no more
than IV roots. A hasupto N distinct eigenvalues.

The eigenvalues, like the factors of a polynomial need
not be distinct. Multiple roots are possible, e.g.

pY(AN) =cA=A1)P (A =Xa) ... (A= An_1)

® FEigenvalues may be real or complex. Complex
eigenvalues appear in conjugate pairs: A\, A

o det(A) :)\1)\2...)\]\[
o tr(A) =X+ X+ ...+ Ay

|5



Eisenvalues

® Example:

® A series of chemical reactions: a %% B & c & p,

Conservation equation:

AW

B] K

C] 0
p] ) \ o

d

[
dt | |
|

0
—ky
ko
0

0 0
ks 0
ks —ky ks
ke —ks )

\ (

\

k3 ks

[A] )
|B]

[
|

C]
D] )

Find the characteristic polynomial of the rate

matrix:
( —ki— A
0 = det K
0
\ 0

0 0
ky— A ks
ky  —ks—ky—A
0 k4
N

det(A) = Z(—l)i+injMij(A>

What are the eigenvalues of the rate matrix?

What are they physically?

0 )
0
ks
—ks—A )
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Eisenvalues

e Example:

® A series of chemical reactions: a . B &

® Conservation equation:

([A:\ [~k 0 0 0\ [ [A])
il B | | & —k ks 0 [B]
at|l [c] | | 0 ko —ks—ky ks ] |
\ol/ \o 0o k —k/\[D)
® Find the characteristic polynomial of the rate

matrix;
( —k1— A 0 0 0 \
kq ky — A ks 0
0 = det
© 0 ky  —ks—ki—A ks
\ 0 0 ks —ks—A )

= A\ + k1) [AZ t (ko + k3 + kg + kg) A+ koky + koks + k3k5]
® What are the eigenvalues of the rate matrix?

® What are they physically?



Eisenvectors

® Finding eigenvectors:

e Given an eigenvalue: A;,what is the corresponding
eigenvector: W; ?

® The eigenvector belongs to the null space of A — A;1

® The eigenvector is not unique: A (cw;) = \;(cw;)

e One option: do Gaussian elimination on |[A — \;1|0]

® At some point the eliminated matrix will look like:

( Ui U ... Uy | Uggery -+ Uim \
0 Uy ... Uy u2(,,+1) ... Uopm
0 0 Uy | Uppery ... Uy
0 0 0 0 e 0
0 0 0 0 e 0
\ 0 0 0| 0 ... 0 )

® These 7 — N components of w;are arbitrary

e # of all zero rows = multiplicity of eigenvalue 8



Eisenvectors

® Examples:

—2 0 0
® Find the eigenvectors of: A — 0 1 O
0 0 3
)\1:—2,)\2:1, )\3:3
0 0 0|0
A+2I0j=]10 3 010
0 0 5|0
1 1 —2
0 0 0

® What are the others?
19



Eisenvectors

® Example:

A series of chemical reactions: A *, B &2 c & D

ks ks

Conservation equation:

([A]\ (—kl 0 0 O\([A:\
dl B | | & -k & 0 B]
at| ] | | 0 k -k—k ks c |
\mo}/) \o o Kk  —k/\[D)

Find the eigenvector of the rate matrix with
eigenvalue O:

—kq 0 0 0 |0

k1 — ks ks 0 0

0 ko —ks—ky ks |0
0 0 ka4 —ks | 0

What does this eigenvector represent!?

20



Eisenvectors

® Example:

® A series of chemical reactions: A *%B & c & p.

ks ks
® Conservation equation:
([A]\ [~k 0 0 0\ [ [A])
dl B | | & -k Kk 0 B
at|l [c] | | 0 ko —ks—ky ks C
\ol/ Vo ok —k/)\ID/

® Find the eigenvector of the rate matrix with
eigenvalue O:

k0 0 0 |0

ki —ky ks 0 |0

0 ky —ks—ky ks |O
00 ke —ks |0

® What does this eigenvector represent!?
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Eisenvectors

® Example:

® Find the eigenvalues and linearly ind. eigenvectors:
0 0
A =
® Find the eigenvalues and linearly ind. eigenvectors:

= (00)
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Eisenvectors

® Example:

® Find the eigenvalues and linearly ind. eigenvectors:

(0 8) Y W(g\)/,(g)

algebraic multiplicity = 2 geometric multiplicity = 2

® Find the eigenvalues and linearly ind. eigenvectors:

()

N
geometric multiplicity = |
algebraic multiplicity = 2 23



Eisenvectors

® Example:

® Find the eigenvalues and linearly ind. eigenvectors:

A =

o O O
o O O
o O =

24



Eisenvectors

® Properties of eigenvectors:
® |f an eigenvalue is distinct (algebraic multiplicity |):
o dimN(A —\NI)=1
® There is only one corresponding eigenvector

® If an eigenvalue has algebraic multiplicity M:

® There could be as many as M linearly
independent eigenvectors.

® Geometric multiplicity is the number of linear
independent eigenvectors for an eigenvalue:

® When geometric and algebraic multiplicity are the
same, the matrix is said to have a “complete set” of

eigenvectors. -6



Eisendecomposition

® For a matrix with a complete set of eigenvectors one
can write:

AW = WA
e where W = (w; wo ... Wy)
® and Ar 0 ... 0
0O Xo ... O
A= .
0 0 ... An

e cquivalently: A = W 1AW
® the matrix can be diagonalized
e equivalently: A = WAW !

® the matrix can be easily reconstructed

27



Eisendecomposition

® Solving systems of equations is easy when a complete set
of eigenvectors and eigenvalues are known:

Ax=b=WAW 'x=b
® step I: A(W_lx) =W 'lb= Ay =c
e step2: y=A"'c= W xAT'W'b
e step3: x= WA 'Wlp

e But howis W™ ' computed?
o (W™ " are the eigenvectors of A1
e IfA=A" and |w;l]|3 = 1,then W1 = W7
e Eigenvalue matrix is unitary: WW?1 =T

® Eigenvectors are orthogonal: W, - Wj — 57,3

28



Eisendecomposition

® Useful when analyzing linear systems of ordinary
differential equations:

x(t) = Ax
e substitute: A = WAW !
o let: y(t) = W x(¢)
® then: y(¢) = Ay(t) or gi(t) = Aivi(t)
® The system of ODEs is decoupled and easy to solve!
® What if there is not a complete set of eigenvectors!?
® Matrix cannot be diagonalized.
e Components cannot be decoupled.

e Jordan Normal Form: A = MJM !

e J is almost diagonal

29
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