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Finite Volume Methods
Constructing Simulations of PDEs
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Recap

• von Neumann stability analysis

• Finite volume methods
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• Generally used for conservation equations of the form:  

•          is the density of a conserved quantity

•          is the flux density of a conserved quantity

• The integral version of such an equation is:

Finite Volume Method
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•

• What are each of these terms?

• B ⇤(t) = V ⇤b̄⇤(t)

• R ⇤(t) = V ⇤r̄⇤(t)

• F ⇤(t) =
X

Fk(t) =
k2faces⇤ k2

X
A⇤

k(nk

•
faces⇤

· j)(t)

the sum of fluxes through each face of the volume *
db̄⇤

V ⇤ = Fk(t) + V ⇤r̄⇤(t)
dt

• We want to solve for         by approximating the reaction and 
flux terms.  Let’s construct low order approximations physically. 

d
B⇤(t) = F ⇤(t) +R⇤(t)

dt
ACC IN/OUT GEN/CON

*

b̄(t)

X

k2faces⇤

Finite Volume Method
Conservation within a finite volume:  
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*
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Finite Volume Method
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Finite Volume Method
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@b
=

@t
�r · j+ r(x, t)

db̄⇤
V ⇤ =

X
Fk(t) + V ⇤r̄⇤(t)

dt
, France k2faces⇤

*

Geometrica: INRIA

Finite Volume Method

© INRIA. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

https://ocw.mit.edu/help/faq-fair-use/
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db̄⇤
V ⇤ =

dt
k2

X
Fk(t) + V ⇤r̄⇤(t)

faces⇤

*Cardiff et al.  J Biomech Eng 136(1), 2013

Finite Volume Method
@b

=
@t

�r · j+ r(x, t)

© Cardiff, Philip et al. License: cc by-nc-nd. Some rights reserved. This content is excluded from
our CreativeCommons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

https://ocw.mit.edu/help/faq-fair-use/
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Numerical Solution of PDEs

L

Step 1: domain decomposition
finite difference: nodes

i, j

W



10

Numerical Solution of PDEs

L

W

Step 1: domain decomposition
finite volume: cells

i, j
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W

Numerical Solution of PDEs
Step 1: domain decomposition

finite element: elements (local basis functions)

i, j
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Numerical Solution of PDEs
Step 1: domain decomposition

Always choose the spacing between nodes/dimensions of cells to match the physics.  
Never pick a certain number of nodes or cells a priori.  That number is irrelevant.
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Close-up of concentration profile in (x,y)-space.
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Figure 6.2 Concentration profile using Dirichlet boundary condition for x = R and y = B. R = 30 

cm, B = 2 cm, and N = 300. 
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Numerical Solution of PDEs
Step 2: formulate an equation to be satisfied at each node/cell
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Numerical Solution of PDEs
Step 2: formulate an equation to be satisfied at each node/cell
Example:                 at interior node/cell i,jr2c = 0

equation i,j: ci+1,j + ci�1,j + ci,j�1 + ci,j+1 � 4ci,j = 0
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Numerical Solution of PDEs
Step 2: formulate an equation to be satisfied at each node/cell
Example:                 at boundary node/cell i,j

equation i,j:

c = 1

ci,j � 1 = 0
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Numerical Solution of PDEs
Step 3: solve the system of equations formulated at each node/cell for the 

value of unknown function at each node/cell

f(c) = 0 If equations are linear, use linear iterative methods
If equations are nonlinear, use nonlinear iterative methods
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Numerical Solution of PDEs
Step 3: solve the system of equations formulated at each node/cell for the 

value of unknown function at each node/cell

f(c) = 0        must be a vector of the unknowns
       must be a vector of the equations
c
f
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Numerical Solution of PDEs

1 N
x

Ny

1

2

i

j

Indexing

k = i+ (j � 1)N
x

ci,j+1 = ck+N
xck = ci,j or

k = j + (i� 1)Ny ci,j+1 = ck+1

3,
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Numerical Solution of PDEs

y

1

, 2

i

j

Indexing

1 N
x

N

k = i+ (j � 1)N
xfk(c) = fi,j(c) or

k = j + (i� 1)Ny

3
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Numerical Solution of PDEs

Ny

1

2

j

Indexing

1 N
x

k = i+ (j � 1)N
xfk(c) = fi,j(c) or

k = j + (i� 1)Ny

3,

i
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Numerical Solution of PDEs

N
x

y

Nz

N

cl = ci,j,k, l =?

Exercise: write a single index for finite difference nodes in a cubic 
domain with (Nx, Ny, Nz) nodes in each cartesian direction



Numerical Solution of PDEs
Exercise: write a single index for finite difference nodes in a cubic 

domain with (Nx, Ny, Nz) nodes in each cartesian direction

N
x

Ny

Nz

c
l

= c
i,j,k

, l = i+ (j � 1)N
x

+ (k � 1)N
x

N
y
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Numerical Solution of PDEs
Example: solve the diffusion equation in 2-D on a square with side = 1. 

r2c = 0c = 0

c = 0

c = 0

c = 1

f(c) = 0

24
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Numerical Solution of PDEs
Example: solve the diffusion equation in 2-D on a square with side = 1. 

h = 1 / 10; % Spacing between finite difference nodes
Nx = 1 + 1 / h; % Number of nodes in x-direction
Ny = Nx; % Number of nodes in y-direction

c0 = zeros( Nx * Ny, 1 ); % Initial guess for solution

c = fsolve( @( c ) my_func( c, Nx, Ny ), c0 ); % Find root of FD equations
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Numerical Solution of PDEs
Example: solve the diffusion equation in 2-D on a square with side = 1. 

function f = my_func( c, Nx, Ny )

% Loop over all nodes
for i = 1:Nx

for j = 1:Ny

k = i + ( j - 1 ) * Nx; % Compound index

% Boundary nodes
if ( i == 1 )

f( k ) = c( k );
elseif ( i == Nx )

f( k ) = c( k );
elseif( j == 1 )

f( k ) = c( k ) - 1;
elseif( j == Ny )

f( k ) = c( k );

% Interior nodes
else

f( k ) = c( k + 1 ) + c( k - 1 ) + c( k - Nx ) + c( k + Nx ) - 4*c( k );
end;

end;
end; 
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Numerical Solution of PDEs
Example: solve the diffusion equation in 2-D on a square with side = 1. 
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0.08 seconds to solve

h = 1/10
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Numerical Solution of PDEs
Example: solve the diffusion equation in 2-D on a square with side = 1. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
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1

h = 1/100

700 seconds to solve!
Why is it almost 10,000x slower?
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Numerical Solution of PDEs
Example: solve the diffusion equation in 2-D on a square with side = 1. 

f(c) = 0 = Ac� b
function [ Ac, b ] = my_func( c, Nx, Ny )

Ac = sparse( Nx * Ny, 1 );
b = sparse( Nx * Ny, 1 );

% Loop over all nodes
for i = 1:Nx

for j = 1:Ny

k = i + ( j - 1 ) * Nx; % Compound index

% Boundary nodes
if ( i == 1 )

Ac( k ) = c( k );
elseif ( i == Nx )

Ac( k ) = c( k );
elseif( j == 1 )

Ac( k ) = c( k );
b( k ) = 1;

elseif( j == Ny )
Ac( k ) = c( k );

% Interior nodes
else

Ac( k ) = c( k + 1 ) + c( k - 1 ) + c( k - Nx ) + c( k + Nx ) - 4*c( k );
end;

end;
end; 
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Numerical Solution of PDEs
Example: solve the diffusion equation in 2-D on a square with side = 1. 

h = 1 / 10; % Spacing between finite difference nodes
Nx = 1 + 1 / h; % Number of nodes in x-direction
Ny = Nx; % Number of nodes in y-direction

% Calculate RHS of Ac = b
[ Ac, b ] = my_func( zeros( Nx * Ny, 1 ), Nx, Ny );

% Find solution of linear FD equations using the an iterative method
% This is gmres (generalized minimum residual).  Other choices include 
% bicgstab (conjugate gradient), minres (minimum residual), etc.
% The requires a function that returns A*c given c.
c = gmres( @( c ) my_func( c, Nx, Ny ), b, 100, 1e-6, 100 ); 
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Numerical Solution of PDEs
Example: solve the diffusion equation in 2-D on a square with side = 1. 

0.015 seconds to solve!
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Numerical Solution of PDEs
Example: solve the diffusion equation in 2-D on a square with side = 1. 

5 seconds to solve!
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Numerical Solution of PDEs
Example: solve the diffusion equation in 2-D on a square with side = 1. 

function [ Ac, b ] = my_func( c, Nx, Ny )

Ac = sparse( Nx * Ny, 1 );
b = sparse( Nx * Ny, 1 ); k = i+ (j � 1)N

x

% Define indices of boundary points and interior points
   bottom = [ 1:Nx ];
   top = Nx*Ny - [ 1:Nx ];
   left = [ 1:Nx:Nx*Ny ];
   right = [ Nx:Nx:Nx*Ny ];
   interior = setdiff( [ 1:Nx*Ny ], [ left, right, bottom, top ] );

Ac( left ) = c( left );
Ac( right ) = c( right );
Ac( top ) = c( top );
Ac( bottom ) = c( bottom );
b( bottom ) = 1;

A( interior ) = c( interior - 1 ) + c( interior + 1 ) + c( interior - Nx ) + c( interior + Nx ) …
- 4 * c( interior ); 

f(c) = 0 = Ac� b
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Numerical Solution of PDEs
Example: solve the diffusion equation in 2-D on a square with side = 1. 

1.2 seconds to solve!
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