10.34: Numerical Methods

Applied to
Chemical Engineering

Finite Volume Methods
Constructing Simulations of PDEs



Recap

® von Neumann stability analysis

® Finite volume methods



Finite Volume Method

® Generally used for conservation equations of the form:

o0b ,
a — _V'J_|_T(X7t)

® h(x,t)is the density of a conserved quantity

® j(x,t)is the flux density of a conserved quantity

® The integral version of such an equation is:

a b(x,t)dV :/ n-j(x,t) d5+/ r(x,t)dV
dt [/« N "
d or
S B () = F* () + R* (1
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Finite Volume Method

® Conservation within a finite volume:

d
—B*(t) = F*(t) + R (1)
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® What are each of these terms? *
o B*(t) = V*b*(¢)
o R'(t > = V(Y

¢ F*(t)= » Fu(t)= ) Ai(ng-j)(t)

kectaces™ kctfaces™
® the sum of fluxes through each face of the volume *

kctfaces™
® We want to solve for b(t) by approximating the reaction and

flux terms. Let’s construct low order approximations physically. *



Finite Volume Method

% = -V . j+r(x,t)

VE = S BV
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Finite Volume Method




Finite Volume Method
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Finite Volume Method
ob
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Numerical Solution of PDEs

Step |: domain decomposition
finite difference: nodes

L, ]




Numerical Solution of PDEs

Step |: domain decomposition
finite volume: cells

L, ]

|
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Numerical Solution of PDEs

Step |: domain decomposition
finite element: elements (local basis functions)

L, ]

|




Numerical Solution of PDEs

Step |: domain decomposition

Always choose the spacing between nodes/dimensions of cells to match the physics.
Never pick a certain number of nodes or cells a priori. That number is irrelevant.
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Numerical Solution of PDEs

Step 2: formulate an equation to be satisfied at each node/cell

| 4



Numerical Solution of PDEs

Step 2: formulate an equation to be satisfied at each node/cell
Example: VZ¢ = () at interior node/cell i,j

equation i Ci+1,5 T Ci—1,7 T Ci j—1 T Ci j+1 — 402',]' = (
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Numerical Solution of PDEs

Step 2: formulate an equation to be satisfied at each node/cell
Example: ¢ =1  at boundary node/cell i,j

equation i,j: C; 5 — 1 =0
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Numerical Solution of PDEs

Step 3: solve the system of equations formulated at each node/cell for the
value of unknown function at each node/cell

f(C) If equations are linear, use linear iterative methods
o If equations are nonlinear, use nonlinear iterative methods

|7



Numerical Solution of PDEs

Step 3: solve the system of equations formulated at each node/cell for the
value of unknown function at each node/cell

C must be a vector of the unknowns
f must be a vector of the equations
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Numerical Solution of PDEs

Indexing

Ny
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Numerical Solution of PDEs

Indexing

Ny
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Numerical Solution of PDEs

Indexing
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Numerical Solution of PDEs

Exercise: write a single index for finite difference nodes in a cubic
domain with (Nx, Ny, Nz) nodes in each cartesian direction

C] — Cz’,j,k; [ =7
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Numerical Solution of PDEs

Exercise: write a single index for finite difference nodes in a cubic
domain with (Nx, Ny, Nz) nodes in each cartesian direction
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Numerical Solution of PDEs

Example: solve the diffusion equation in 2-D on a square with side = |.
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Numerical Solution of PDEs

Example: solve the diffusion equation in 2-D on a square with side = |.

h =1/ 10; % Spacing between finite difference nodes
Nx =1+ 1/ h; % Number of nodes in x-direction
Ny = Nx; % Number of nodes in y-direction

c@ = zeros( Nx * Ny, 1 ); % Initial guess for solution

c = fsolve( @C ¢ ) my_func(C ¢, Nx, Ny ), c@ ); % Find root of FD equations

25



Numerical Solution of PDEs

Example: solve the diffusion equation in 2-D on a square with side = |.
function f = my_func(C ¢, Nx, Ny )

% Loop over all nodes
for 1 = 1:Nx
for j = 1:Ny
k =1+ C3J-1)* Nx; % Compound index

% Boundary nodes

if (1 =1)
fC k) =cCk);
elseif ( 1 == Nx )
fC k) =cCk);

elseif( j == 1)
fFCk)=cCk) - 1;
elseif( j == Ny )

fC kD) =cCk);
% Interior nodes
else
fCk)=cCk+1)+cCk-1)+cCk-Nx)+cCk+Nx) - 4*c(C k );
end;
end;

end;



Numerical Solution of PDEs

Example: solve the diffusion equation in 2-D on a square with side = |.

h=1/10
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Numerical Solution of PDEs

Example: solve the diffusion equation in 2-D on a square with side = |.

h = 1/100

1
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Why is it almost 10,000x slower?



Numerical Solution of PDEs

Example: solve the diffusion equation in 2-D on a square with side = |.

f(c) =0=Ac—bDb

function [ Ac, b ] = my_func(C c, Nx, Ny )

Ac = sparse( Nx * Ny, 1 );
b = sparse( Nx * Ny, 1 );

% Loop over all nodes
for 1 = 1:Nx
for 7 = 1:Ny

k =1+ C3J-1)* Nx; % Compound index

% Boundary nodes
1if (1 ==1)
AcC k ) = cC k );
elseif ( 1 == Nx )
AcC k ) = cC k );
elseif( j ==1)

AcC k) = c( k );

b( k) = 1;
elseif( j == Ny )

AcC k) = c( k );

% Interior nodes

else

AcCk )=cCk+1)+cCk-1)+cCk=-Nx)+cCk+Nx)-4*c( k );
end;

end;

end;

29



Example: solve the diffusion equation in 2-D on a square with side = |.

h

NXx

Numerical Solution of PDEs

=1/ 10; % Spacing between finite difference nodes
=1+ 1/ h; % Number of nodes in x-direction

Ny = Nx; % Number of nodes in y-direction

— 2

%
%
%
%
C

Calculate RHS of Ac = b
Ac, b ] = my_func(C zeros(C Nx * Ny, 1 ), Nx, Ny );

Find solution of linear FD equations using the an iterative method
This 1s gmres (generalized minimum residual). Other choices include
bicgstab (conjugate gradient), minres (minimum residual), etc.

The requires a function that returns A*c given c.

= gmresC @C ¢ ) my_func(C ¢, Nx, Ny ), b, 100, le-6, 100 );
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Numerical Solution of PDEs

Example: solve the diffusion equation in 2-D on a square with side = |.
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Numerical Solution of PDEs

Example: solve the diffusion equation in 2-D on a square with side = |.

h = 1/100
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Numerical Solution of PDEs

Example: solve the diffusion equation in 2-D on a square with side = |.

f(c) =0=Ac—bDb

function [ Ac, b ] = my_func(C c, Nx, Ny )

Ac = sparse( Nx * Ny, 1 ); k:Z_I_(]_ ]-)Naj‘

b = sparse( Nx * Ny, 1 );

% Define indices of boundary points and interior points

bottom = [ 1:Nx ];

top = Nx*Ny - [ 1:Nx ];

left = [ 1:Nx:Nx*Ny 7;

right = [ Nx:Nx:Nx*Ny 7J;

interior = setdiff( [ 1:Nx*Ny ], [ left, right, bottom, top ] );

Ac(C left ) = c( left );

AcC right ) = c(C right );
AcC top ) = c(C top );

Ac( bottom ) = c( bottom );
b( bottom ) = 1;

AC interior ) = c( interior - 1 ) + c( interior + 1 ) + c( interior - Nx ) + c( interior + Nx ) ..
- 4 * c(C interior ),
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Numerical Solution of PDEs

Example: solve the diffusion equation in 2-D on a square with side = |.

h = 1/100
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