10.37 Chemical and Biological Reaction Engineering, Spring 2007 Prof. William H. Green
 Lecture 4: Reaction Mechanisms and Rate Laws

Fundamentals of Chemical Reactions

-PSSA (SS, QSSA, PSSH)
-long chain approximation
-rate-limiting step
A+B
Stable molecules: neutral, closed shells

Figure 1. Stable molecules.

Pauli Exclusion Principle
-You can't put 2 identical e-in the same exact spot

Figure 2. Two electrons in an orbital have opposite spin.
Bond Forming

Figure 3. Bond formation. On the left, an empty orbital receives two electrons from another orbital. On the right, half-filled orbitals on the H atom mix to form a filled bonding orbital with two electrons.

Boltzmann Distribution

$$
p(E) \sim e^{-E / k_{B} T} \quad k_{B}=\frac{R}{N_{A}}
$$

$E \gg k_{B} T \rightarrow$ very unlikely
$E_{A}+E_{B}>E_{\substack{\text { Activation } \\ \text { Barrier }}}$

Small fraction will collide correctly and react
$k(T) \sim A e^{-E_{a} / k_{B} T}$
A is the prefactor, proportional to the number of ways the molecules get together with sufficient energy to react.

```
Reactive Intermediates
-charged \longrightarrow acid/base chemistry
-empty orbital }\longrightarrow\mathrm{ metal catalyst
-single e- orbital \longrightarrow free radical
```

Example:

$$
\frac{d\left[\mathrm{RO}^{-}\right]}{d t} \approx 0
$$

Rate Limiting Step

-Only 1 rate constant of $k_{\text {eff }}$ is really relevant
-What do you have most of in a reaction mix? This is the material preceding the rate limiting step.

$\mathrm{R}^{+}+\mathrm{H}_{2} \mathrm{O} \xrightarrow{k_{3}} \mathrm{ROH}+\mathrm{H}^{+}$

$$
\frac{d\left[\mathrm{R}^{+}\right]}{d t} \approx 0
$$

$$
\left[\mathrm{R}^{+}\right] \approx \frac{k_{2}\left[\begin{array}{c}
\mathrm{OH} \\
\mathrm{RC}-\mathrm{OR} \\
+
\end{array}\right]}{k_{3}\left[\mathrm{H}_{2} \mathrm{O}\right]}
$$

$$
r_{\text {ROH }}=k_{3}\left[\mathrm{R}^{+}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]=k_{2}\left[\begin{array}{c}
\mathrm{OH} \\
\mathrm{RC} \\
+
\end{array}\right]=\underbrace{\frac{k_{1} k_{2}}{k_{-1}+k_{2}}}_{k_{\text {eff }}}\left[\mathrm{H}^{+}\right]\left[\begin{array}{l}
\mathrm{O} \\
\mathrm{RC}-\mathrm{OR}
\end{array}\right]
$$

$\quad \begin{gathered}\text { Ethylene } \\ \text { (in plastics) }\end{gathered}$
$\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{H}_{2}+\mathrm{C}_{2} \mathrm{H}_{4}$$\quad \begin{aligned} & \text { Ethyl radical } \\ & \mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{H}^{\cdot} \rightarrow \mathrm{H}_{2}+\mathrm{C}_{2} \mathrm{H}_{5}^{*} \\ & \mathrm{C}_{2} \mathrm{H}_{5}^{\cdot} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}^{\cdot} \\ & -r_{\mathrm{C}_{2} \mathrm{H}_{6}}=k_{1}\left[\mathrm{H}^{\cdot}\right]\left[\mathrm{C}_{2} \mathrm{H}_{6}\right] \\ & \mathrm{C}_{2} \mathrm{H}_{6} \xrightarrow{\text { slow }} 2 \mathrm{CH}_{3}^{\cdot} \quad \text { inefficient, but important (radical creation) } \\ & \mathrm{CH}_{3}^{\cdot}+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{CH}_{4}+\mathrm{C}_{2} \mathrm{H}_{5}^{\cdot} \\ & 2 \mathrm{C}_{2} \mathrm{H}_{5}^{\cdot} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{C}_{2} \mathrm{H}_{4} \quad \text { (radical destruction) } \\ & \text { (disproportionation) }\end{aligned}$
$\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{5}$ reverse disproportionation also happens

