
Problem Set 6, #4 

10.40 Thermodynamics Fall 2003 
Problem Set 6 
 

 
Problem 4 

 
For 0.5 mol of O2 at 0.1 atm., and 1000 K, compute U, S, G, and Cv. You may treat O2 as an 
ideal gas at these T and P conditions.  Note that both O2 and the O atom have a net spin of 1 
in their ground states.  Also the first excited electronic state of O2 occurs at a thermal energy 
of 11,300 K and has a net spin of 1/2.  The bond dissociation energy of O2 , Do, is 117.1 
kcal/mol and the thermal vibrational and rotational energies are 2230 K and 2.07 K 
respectively.  

 
 
Solution: 
 
Since O2 for this problem is a diatomic, ideal gas, we can use the equations given at the end of 
the Lecture 23 notes in the Statistical Thermodynamics: Fundamentals handout from class.  The 
equations calculate A, U, CV, and S using expressions derived from the canonical partition 
function for an ideal gas.  The equations are shown below. 
 

 

 
 
G could also be found by noting that  
G = U + NkT – TS
 
Thereby eliminating the need to calculate A as done in the notes.  However, we will calculate A 
for completeness here.  The calculations are straightforward, but tedious.  It was recommended 
that they be performed using Matlab, Maple, Excel, or some other type of software.  Some points 
do need to be clarified to resolve the information given in the problem statement with the form of 
the equations in the notes.   
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First, since O2 has two atoms, there are 2 rotational degrees of freedom and  3N-5 = 1 vibrational 
degrees of freedom.  The vibrational and rotational energies are given in terms of temperature in 
the problem statement, where: 
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These expressions could then be inserted directly into the equations.  Giving the vibrational and 
rotational energies in this form saved students the trouble of calculating I and ν in the problem 
statement.  Also, it can be deduced from the reading that for O2, σ = 2. 
 
The only other modification that needed to be made to the equations given in the Lecture 23 
notes was that the equations assume that only the groud electronic state of the diatomic molecule 
is occupied, whereas for O2 at 1000 K we must acount for the 1st excited electronic state also 
being occupied as well.  From class notes, we have that the electronic partition function in this 
case is: 
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where ωe1 = 3, the degeneracy of the ground state of O2, ωe2 = 2, the degeneracy of the 1st excited 
electronic state of O2, θe = (εe2  – εe1)/k =11,300 K is the energy of the first excited state, and 
De =Do +(1/2)hν.  We must replace the contribution from the electronic partition function in 
each of the equations above with the contribution from this new partition function that takes into 
account the 1st excited electronic state.  Specifically: 

1 2ln ln 
ee e T

e e e
A Dq e
kT kT

θ
ω ω

−⎛ ⎞− = = + +⎜ ⎟
⎝ ⎠

 

2
2

2

1 2

2

1 2

 ln 
e

e

e

e

Te e

e e e

TV ,N
e e

T
e e e

T
e e

eU q D TT T
kT T kT e

D e
kT T e

θ

θ

θ

θ

ω θ

ω ω

ω θ

ω ω

−

−

−

−

⎛ ⎞⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟∂⎛ ⎞ ⎝ ⎠= = − +⎜ ⎟⎜ ⎟⎜ ⎟∂⎝ ⎠ ⎜ ⎟⎜ ⎟+⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

= − +
⎛ ⎞+⎜ ⎟
⎝ ⎠

 

10.40 Fall 2003  Page 2 of 6 
Problem Set 6 Solutions 



Problem Set 6, #4 

2 2

1 2

2

1 2 2

1 2

 ln 1
e

e

e

e

T
Ve e e e e

TV V ,N V e e

T
e

e e
T

e e

C q DU T
k k T T T T k e

e
T

e

θ

θ

θ

θ

ω θ

ω ω

θω ω
ω ω

−

−

−

−

⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞∂∂ ∂ ∂⎛ ⎞⎛ ⎞ ⎜ ⎟⎜ ⎟= = = − +⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠ +⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞= ⎜ ⎟
⎝ ⎠ ⎛ ⎞+⎜ ⎟

⎝ ⎠

e

 

2

 ln ln e e e
e

V ,N

S q DT q T
k T kT

∂⎛ ⎞= + = −⎜ ⎟∂⎝ ⎠

2
2

1 2

e

e

Te e

e

T
e e

e DT
kTe

θ

θ

ω θ

ω ω

−

−

⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟⎝ ⎠+ +⎜ ⎟
⎜ ⎟+⎜ ⎟
⎝ ⎠

( )

( )

2 1

2 1

1 2

2
1 2

1 2

ln 

ln 
e

e

kT
e e

T
e ekT

e e
T

e e

e

ee
T e

ε ε

θ
ε ε

θ

ω ω

ω θω ω
ω ω

− −

−
− −

−

⎛ ⎞+ +⎜ ⎟
⎝ ⎠

⎛ ⎞= + +⎜ ⎟ ⎛ ⎞⎝ ⎠ +⎜ ⎟
⎝ ⎠

 

 
We are now ready to go ahead with our calculations.  As shown from the contribution of the 
electronic partition function to the thermodynamic properties, these calculations are very tedious.  
The results are shown in the table below.  The contribution from each of the translational, 
rotational, vibrational, and electronic partition functions were calculated to facilitate the 
comparison of intermediate calculations while searching for coding bugs.  Note that all 
properties are extensive. 
 

 A (J) S (J/K) U (J) G (J) CV (J/K) 
qt     -91899 98.14       6236    -87742 6.236 
qr    -22811 26.97       4157    -18654 4.157 
qv       4162  1.59      5752       8320 2.791 
qe -254293  4.57 -249725 -250136 0.004 
Q -364841 131.2 -233580 -360684 13.188 

 
From these calculations, one can see that while the electronic partition function contributed 
greatly to U and G, it had little affect on CV.  The translational partition function contributed the 
most to the entropy.  Similar conclusions can be drawn about the contributions from other 
partition functions as well. 
 
Rather than typing in all the equations at the end of Lecture 23, one could derive these using the 
natural log of each of the translational, vibrational, etc. partition functions, the equations that 
relate the canonical partition function to the thermodynamic properties from Section 22.4 of the 
handout, and the symbolic differentiation tool in Matlab.  Two sets of code for Matlab, one that 
used all the equations given in Lecture 23, and the other that uses the shortcut described above, 
are shown below. 
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Method 1:  Equations from Lecture 23 
% To determine the thermodynamic properties for an ideal, diatomic gas, we will 
% use the equations listed at the end of the handout notes for Lecture 23 
% We will break up these up into their contributions from the translational 
% rotational, vibrational, and electronic degrees of freedom 
% First we identify our constants and input values for them 
% paying special attention to units 
T = 1000;                          %K 
Nav = 6.022137E23;        %Avogadro's Number, mol^-1 
N = 0.5 * Nav;                  %number of particles 
h = 6.62608E-34;              %Js 
k = 1.38066E-23;              %J/K 
m = 2*16*1.66054E-27;   %moss of O2, kg 
theta_r = 2.07;                   %K 
theta_v = 2230;                 %K 
theta_e = 11300;                %K 
De = 117.1 * 4186 / Nav + (1/2) * theta_v * k;     %De = Do (kcal/mol --> J) + (1/2)hv 
we1 = 3;  we2 = 2;    
sigma = 2; 
e = exp(1); 
P = 0.1*10^5/0.986923;    %Pa 
 
% Next we define V using the Ideal Gas EOS 
V = N*k*T/P; 
 
% Next, we calculate A, the Helmholtz Free Energy: 
At = -k*T*N*log((2*pi*m*k*T/h^2)^(3/2)*V*e/N); 
Ar = -k*T*N*log(T/(sigma*theta_r)); 
Av = k*T*N*((theta_v/(2*T)) + log((1-exp(-theta_v/T)))); 
Ae = -k*T*N*(De/(k*T) + log(we1 + we2*exp(-(theta_e/T)))); 
A = At + Ar + Av + Ae; 
 
% Calculate S, the Entropy 
St = k*N*log((2*pi*m*k*T/h^2)^(3/2)*V*e^(5/2)/N); 
Sr = k*N*log(T*e/(sigma*theta_r)); 
Sv = k*N*((theta_v/T)/(exp(theta_v/T)-1) - log((1-exp(-theta_v/T)))); 
Se = k*N*(log(we1 + we2*exp(-(theta_e/T))) + (we2*theta_e*exp(-(theta_e/T))/T)/(we1 + we2*exp(-(theta_e/T)))); 
S = St + Sr + Sv + Se; 
 
% Calculate U, the Internal Energy 
Ut = N*k*T*(3/2); 
Ur = N*k*T*(2/2); 
Uv = N*k*T*(theta_v/(2*T) + (theta_v/T)/(exp(theta_v/T)-1)); 
Ue = N*k*T^2*(-De/(k*T^2) + (we2*theta_e*exp(-(theta_e/T))/T^2)/(we1 + we2*exp(-(theta_e/T)))); 
U = Ut + Ur + Uv + Ue; 
 
% Calculate G, the Gibbs Energy 
Gt = At + P*V; 
Gr = Ar + P*V; 
Gv = Av + P*V; 
Ge = Ae + P*V; 
G = A + P*V; 
 
% Calculate Cv, the Gibbs Energy 
Cv_t = (3/2)*k*N; 
Cv_r = (2/2)*k*N; 
Cv_v = k*N*((theta_v/T)^2 * exp(theta_v/T)/((exp(theta_v/T)-1)^2)); 
Cv_e = k*N*((we1*we2*(theta_e/T)^2)*(exp(-theta_e/T)/(we1 + we2*exp(-theta_e/T))^2)); 
Cv = Cv_t + Cv_r + Cv_v + Cv_e; 
 
s = [St; Sr; Sv; Se; S]; 
u = [Ut; Ur; Uv; Ue; U]; 
g = [Gt; Gr; Gv; Ge; G]; 
cv = [Cv_t; Cv_r; Cv_v; Cv_e; Cv]; 
 
format short e 
disp(['    S (J/K)       U (J)        G (J)       Cv (J/K) ']);   
disp(['  ===========  ===========  ===========  ===========']);    
disp([s u g cv]); 
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Method 2:  Using ln(Q)
% To determine the partition function for an ideal, diatomic gas, we will look at the  
% individual partition functions for the translational, vibrational, etc. contributions 
% We will evaluate the natural log of these partition functions 
 
% First we declare all our variables 
syms ln_Q ln_qt ln_qv ln_qr ln_qe V; 
 
% Now we identify our constants.  We will have to give values for all these constants 
% before calculating our final solutions.  This serves as a checklist 
syms T N Nav h k m theta_r theta_v theta_e De we1 we2 sigma e P; 
 
% Next, we start with the translational partition function, and include in it the 
% 1/N! term.  This gives us 
ln_qt = log((2*pi*m*k*T/h^2)^(3/2)*V*e/N); 
 
% Next, we define ln_qr 
% Here, we can sub thera_r = h^2/(8*pi^2*I*k) 
ln_qr = log(T/(sigma*theta_r)); 
 
% Now we define ln_qv 
% Here, we note that theta_v = h*v/k, where v is the vibrational freq. 
% Since we have only one vibrational d.o.f.: 
ln_qv = -(theta_v/(2*T)) - log((1-exp(-theta_v/T))); 
 
% And finally, we define ln_qe 
% at this temp for O2, we must consider the first electronic state 
ln_qe = (De/(k*T)) + log(we1 + we2*exp(-(theta_e/T))); 
 
% Next we calculate Q as the product of all contributing q_i's for N particles 
ln_Q = N*(ln_qt + ln_qr + ln_qv + ln_qe); 
 
% Now we're ready to input thermodynamic variables of interest 
% These are all extensive variables 
syms A U S G Cv P_calc; 
 
% We can determine the contribution of each of the partition functions to the 
% overall value of the thermodynamic property of interest 
% First, we create a vector of partion functions 
ln_q = [N*ln_qt N*ln_qr N*ln_qv N*ln_qe ln_Q]; 
% Next, we create vectors for our thermodynamic properties of interest 
s = zeros(length(ln_q), 1); 
u = zeros(length(ln_q), 1); 
g = zeros(length(ln_q), 1); 
cv = zeros(length(ln_q), 1); 
 
% Now we loop it and print it 
for i=1:length(ln_q) 
    A(i) = -k * T * ln_q(i); 
    U(i) = k * T^2 * diff(ln_q(i), 'T'); 
    S(i) = k * T * diff(ln_q(i), 'T') + k * ln_q(i); 
    G(i) = U(i) + P*V - T*S(i); 
    Cv(i) = diff(U(i), 'T');  
end 
 
%Check the calculated P with the real value 
P_calc = k*T*diff(ln_Q, 'V') 
 
% Now we must input values for our constants, paying special attention to units 
T = 1000;               %K 
Nav = 6.022137E23;      %Avogadro's Number, mol^-1 
N = 0.5 * Nav;          %number of particles 
h = 6.62608E-34;        %Js 
k = 1.38066E-23;        %J/K 
m = 2*16*1.66054E-27;   %moss of O2, kg 
theta_r = 2.07;         %K 
theta_v = 2230;         %K 
theta_e = 11300;        %K 
De = 117.1 * 4186 / Nav + (1/2) * theta_v * k; %De = Do (kcal/mol --> J) + (1/2)hv 
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we1 = 3; 
we2 = 2;    
sigma = 2; 
e = exp(1); 
P = 0.1*10^5/0.986923;  %Pa 
V = (N*k*T/P);          %m^3 
 
% We should check for consistency: 
disp('All the numbers below should be zero'); 
disp('G - (A + PV) = 0'); 
eval(G(length(ln_q))) - eval(A(length(ln_q)) + P*V) 
disp('A - (U - TS) = 0'); 
eval(A(length(ln_q))) - eval(U(length(ln_q)) - T*S(length(ln_q))) 
disp('G - (U + PV - TS) = 0'); 
eval(G(length(ln_q))) - eval(U(length(ln_q)) - T*S(length(ln_q)) + P*V) 
disp('P_calc = NkT/R (it`s an ideal gas)'); 
P_calc  
 
% Finally, output the results 
for i=1:length(ln_q) 
    s(i) = eval(S(i)); 
    u(i) = eval(U(i)); 
    g(i) = eval(G(i)); 
    cv(i) = eval(Cv(i)); 
end 
 
format short e 
disp(['    S (J/K)       U (J)        G (J)       Cv (J/K) ']);   
disp(['  ===========  ===========  ===========  ===========']);    
disp([s u g cv]); 
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