
 1

10.52 
Mechanics of Fluids 

Spring 2006 
Problem Set 5 

 
 
Problem 1
 
Consider a perfect gas (P=ρRT) which flows from one reservoir at pressure P1 to another at 
pressure P2 via a long thin uniform capillary tubing.  The gas is Newtonian and the pressure 
ratio, P1/P2, is substantially greater than unity.  The entire apparatus exchanges heat readily with 
the ambient and the system is, therefore, essentially isothermal. 
 

a) Assume that inertia may be neglected and derive an equation for the mass flow 
rate in terms of the pressures, the tubing length and radius, the viscosity of the 
gas, etc. 

b) State the quantitative criteria which must be satisfied for the above assumption to 
be valid. 

c) If the gas is air at 20°C flowing in a tube with a diameter of 2mm and length of 
5m, and if P1 and P2 are 105Pa and 103Pa, respectively, what is the mass flow rate 
of air?  Is the criterion developed in Part (b) satisfied? 

 

 (Problem adapted from Ain Sonin and Ascher Shapiro. Used with permission.)



Problem 2 (Problem by Ain Sonin and Ascher Shapiro. Used with permission.)
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A piece of glass tubing is drawn out into a long capillary of constant cross-sectional area as 
shown in the sketch. The tube is filled with liquid while held vertically, and a finger is placed 
over the top. When the finger is removed, the liquid begins to flow out the bottom of the tube (x 
= 0   z = 0; see sketch).  
 
In all that follows, it is agreed to ignore the effects of surface tension.  
 
It is found experimentally that the volume discharge at exit, Q0(t), varies with time as in the 
sketch above. 
 

(a) Explain qualitatively the physical phenomena which account for the shape of the curve 
Q0(t). 

 
(b) Estimate the order of magnitude of the time t*, and explain the basis of your estimate. 

 
(c )   Assume that, for times well in excess of t*, the flow is essentially inertia-free.  
   How long will it take to drain the tube? 
 
(d) Will your result be applicable if the fluid is glycerin (ρ = 1260 kg/m3, ν = 0.6 x 10-3 m2/s) 

and if h0 = 0.5 m and R = 1mm?  Would the analysis apply if the fluid were water?   
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Problem 3 
 
Consider a rigid sphere which is fully immersed in an incompressible Newtonian fluid.  The 
sphere is very slowly pushed toward a rigid plane boundary with a constant velocity U.  At time 
zero, the sphere is close to the boundary in the sense that the distance between the sphere and the 
boundary is very small compared to the radius of the sphere. 
 
 Develop an approximate expression for the force which must be applied to the sphere as a 
function of time. 
 
 Note:  Assume that inertia may be neglected and develop a criterion which must be 

satisfied if this is to be true. 
 
 
Problem 4
 

A planar sheet of material is to be coated by dipping it into a bath of Newtonian liquid. The 
sheet is then hung in a vertical orientation and the film is allowed to drain. This will not lead 
to a film of uniform thickness. The situation is instead believed to be more or less as shown 
in the sketch. Because the film is thin (δ/x << 1), it is believed that inertial forces may be 
neglected. Surface tension effects may also be neglected.  

 
A. What is the partial differential equation which describes the evolution of the film 

thickness as a function of x and t? 
B. Use order-of-magnitude techniques to obtain a solution that should be exact at 

very long times. 
C. In the context of the solution obtained in part (B), what criterion must be satisfied 

if inertial forces are to be truly negligible?  Express your answer in terms of 
variables that can be specified a priori such as x, t, g, ρ and µ. Do not express 
your answer in terms of dependent variables such as u and δ. 

D. What criterion must be satisfied if time is to be “long”?  Assume that the layer is 
initially of uniform thickness, δi. 

E. If, for the fluid in question, ρ = 1 gm/cm3 and υ = 10 cm2/s, will the solution be 
valid at t = 10s and x  = 10 cm? At t = 100s and x = 10 cm?  In both cases, δi = 1 
mm. 
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Problem 5
 

1. A thin “thread” of fluid issues from a tube as shown in the sketch. The fluid is 
Newtonian and incompressible. The flow is believed to be viscous dominated.  In 
addition, dR/dz << 1.  The roles of surface tension, of gravity, of air drag, of inertia, 
etc., may all be neglected.  However, please note that the filament is “pulled” with a 
force F.  Except in Part E, vz may be assumed to be independent of r. 

 
A. It is believed that τrz must be zero for z > 0 and σrr must be continuous across the 

interface. Show that: 
 

F  = πσzzR2   =   constant     (1) 
and  
q = πvzR2   =   constant     (2) 
 

 
B. Note that 

z
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z

∂
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∂
      (3) 

  and 
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  Furthermore, continuity (see eq. 9) requires z
r

vrv   
2 z
∂

= −
∂

, or 
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  Thus 
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  Please obtain vz and R as functions of F, q, z, etc.  Set R = R0 at z = z0. 
 
 

C. Please provide a criterion which must be satisfied if the assumption of viscous 
dominated flow is to be valid. 

D. How does the rate of momentum flow behave as z → ∞?  What are the physical 
consequences of this observation? 

E. Equations (4) and (5) may be combined to give 
 

zvp
z

∂
− −µ =

∂
0        (7) 

  which is not consistent with an obvious simplification of eq. (11), i.e. 
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Is it possible that eq. (7) and eq. (11) can be reconciled if vz is a function of radial 

position, r? Would this negate all of Parts A to D?  If you believe that vz is actually a 
function of r, please give an estimate for the magnitude of the variation in terms of dR/dz, 
etc. 
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Notes: 
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Problem 6
 
 

 

 
 

A flow in a square duct of width b passes through a very small angle of turn θ, such that sin 
θ = θ; the bend's radius of curvature is large compared with b. At the inlet to the turn, the flow 
velocity is independent of x, but has a linear velocity gradient in the y-direction, such that there 
is a very small excess of velocity ∆V at the top of the duct, and a corresponding defect ∆V at the 
bottom, the mean velocity being V. 

The flow is incompressible, steady, and non-viscous, and gravitational effects are 
negligible. 

(a) Show that a streamwise component of vorticity develops in the bend, and that the ratio 
of the streamwise vorticity at exit (the "secondary vorticity") to the original vorticity is 
approximately equal to 2θ. To an observer looking downstream, is this secondary vorticity 
clockwise or counter-clockwise? 

(b) Show that the average transverse velocity at the bend exit is of the order of θ∆V. 
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(Problem by Ain Sonin and Ascher Shapiro. Used with permission.) 
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