10.569 Synthesis of Polymers Prof. Paula Hammond Lecture 4: Common Processing Approaches, Near-equilibrium vs. Far from Equilibrium, Homogeneous Solution and Bulk Polymerizations

Acid catalyst [HA]

$$\begin{bmatrix} a \end{bmatrix}_{o} kt = \frac{1}{1 - \pi} - 1 = \overline{p_{n}} - 1$$

$$\overline{p_{n}} \text{ linear } \uparrow \text{ with time}$$

For self-catalyzed case:

$$\frac{1}{(1 - \pi)^{2}} = \overline{p_{n}}^{2} = 2 \begin{bmatrix} M \end{bmatrix}_{o}^{2} kt + 1$$

$$\Rightarrow \overline{p_{n}} \uparrow \text{ with } \sqrt{t}$$

Basic rate expression for acid catalyst:

$$R_{p} = k_{3}K_{12} [HA] [COOH] [OH]$$

$$\downarrow decrease$$

Self-catalyzed:

$$R_{p} = K_{3}K_{12,COOH} \begin{bmatrix} COOH \end{bmatrix}^{2} \begin{bmatrix} OH \end{bmatrix}$$

Slower reaction Gets extremely slow at the end of the reaction

O U O H − O O U − O O O O O O O O O O O O O	Polyester (k ~ 1)
$-NH_2 + -COOH \longrightarrow -C - N - N$	Polyamide (k ~ 10) In some cases k ~ 100 (hungry polymer)

Typical process conditions for near equilibrium step growth:

- High T
 - to increase k (k[↑] with T[↑])
 - to aid in byproduct removal
- Bulk or mass polymerization (no solvent)
 - if the reactants are miscible (forming 1 uniform, mixed phase), get highest concentrations possible
 - no need for separations step (remove solvent)
 - viscosity η low enough to process until high MW
 - product can be directly processed into final form
- Solvents
 - may be needed to solubilize two monomers (reactants)

- could allow higher T to be approached without scorching polymer
- carrier (dilutant) for viscous media (exp for high MW)

Interchange Reactions in Near-Equilibrium Polymerization (k ~ 1-10)

Ex: polyamide (but same thing happens in polyester)

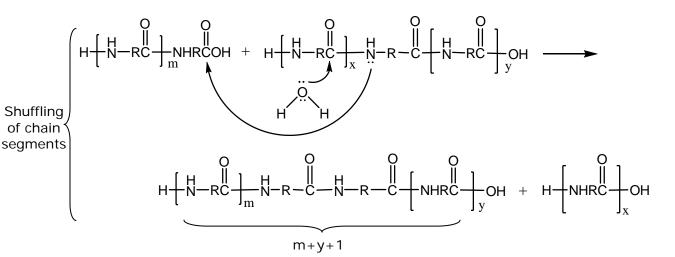
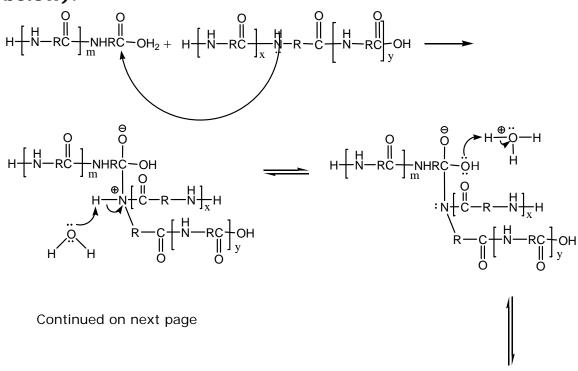
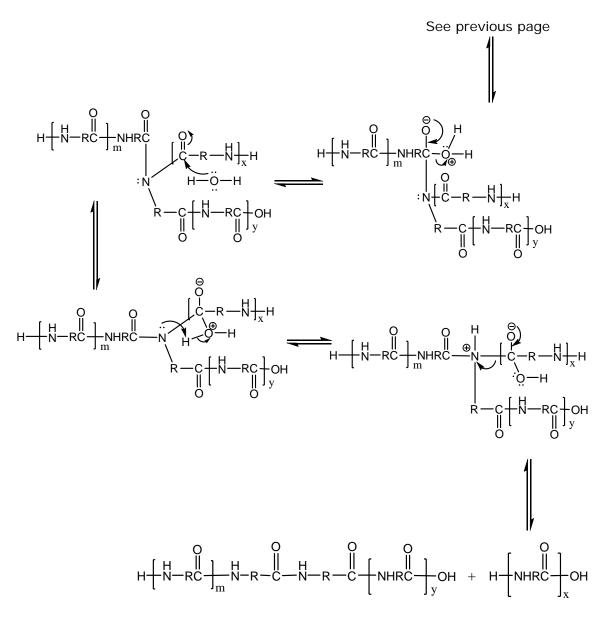




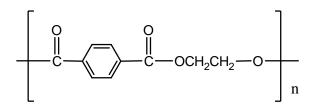
Illustration of shuffling of chain segments (redrawn below):

10.569, Synthesis of Polymers, Fall 2006 Prof. Paula Hammond Lecture 4 Page 2 of 6

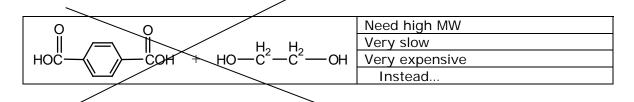
- If no removal of byproduct (H₂O) \Rightarrow No net change in MW
- Only if H_2O is removed during interchange will MW change (increase) \Rightarrow Can be used to increase MW in the final form of a product

10.569, Synthesis of Polymers, Fall 2006 Prof. Paula Hammond Lecture 4 Page 3 of 6

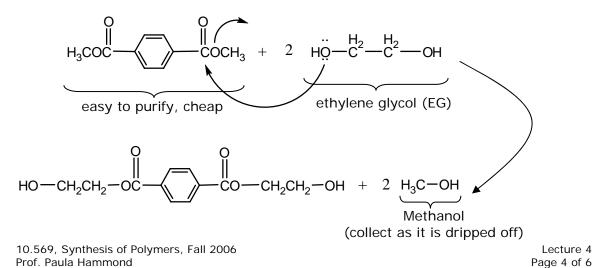
Real Industrial Processes


 $\mathsf{Diacid} + \mathsf{Diol} \to \mathsf{Iow} \mathsf{MW} \mathsf{ polymers}$

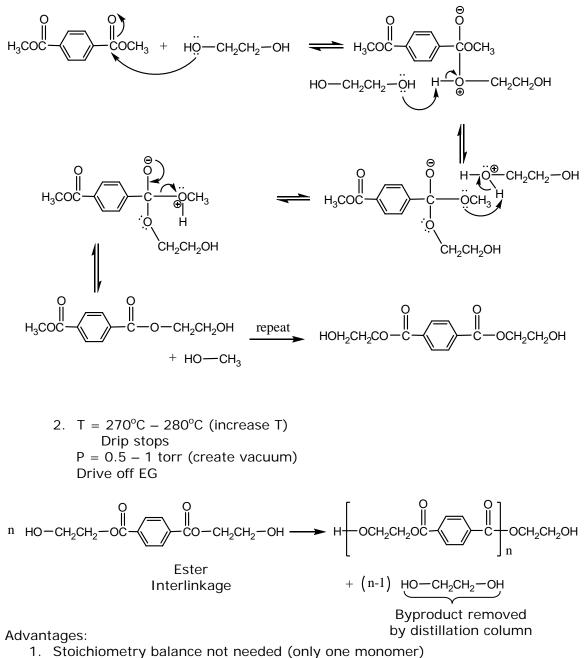
Crosslinked networks


Less need for high π

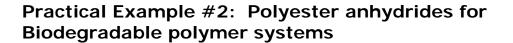
Making polyethylene terephthalate (PET) (polyester)


Trade names: Mylar®, Dacron®, Terylene®

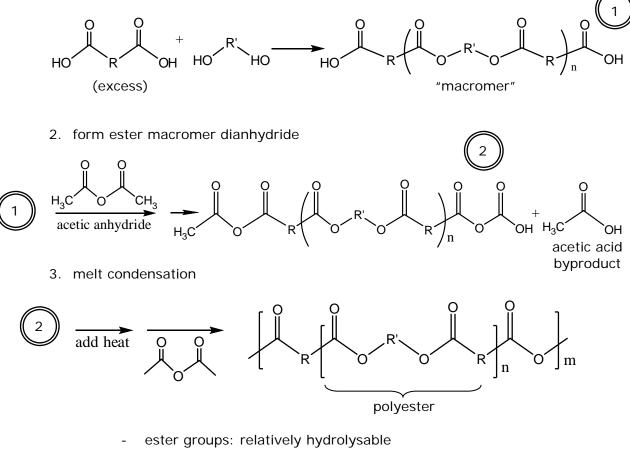
$T_{\rm m} = 270^{\rm o} \rm C$		
High mechanical strength (from aromatic group rigidity)		Ideal material for carpet, clothing, photographic substrates, Boil-in- Bag meals, PET Coke
Tough (flexibility in backbone)		
Partially crystalline (adds to toughness)	J	
\Rightarrow \$9.5 billion/year		bottles


- 2-Step Process
 - 1. dimethyl terephthalate

 $T\sim$ 150 – 210 $^{o}\mathrm{C}$


P ~ 1 atm

Done in "solvent" of excess ethylene glycol (increase rate of forward rxn) Detailed mechanism for above reaction:



- 2. Dimethyl ester more easily purified
- 3. Ester interchange k (rate constant) is larger than k for acid + alcohol (better kinetics)
- 4. removal of ethylene glycol (EG) is cleaner than H₂O removal

10.569, Synthesis of Polymers, Fall 2006 Prof. Paula Hammond Lecture 4 Page 5 of 6

1. diacid + diol \rightarrow oligometric polyester

- anhydride groups: can be even more hydrolytically susceptible
- \Rightarrow degradable polymer
- \Rightarrow alkyl esters, acids

10.569, Synthesis of Polymers, Fall 2006 Prof. Paula Hammond Lecture 4 Page 6 of 6