

Figure 1: Processing and molecular structure of a polymer determines its function, structure, and morphology, which in turn determines its final properties

Diversity of Polymer Chains (two types):

A) Low molar mass (small) molecules

Example:

Synthesis determines molecular structure One goal of synthesis is to avoid side reactions and achieve a pure product

B) Polymer

- Control molecular structure
- Control regularity of backbone
 - Ex: stereochemistry

Citation: Professor Paula Hammond, 10.569 Synthesis of Polymers Fall 2006 course materials, MIT OpenCourseWare (http://ocw.mit.edu/index.html), Massachusetts Institute of Technology, Date.

• Ex: sequencing in copolymers

These three polymers are different even though they have the same number of monomers:

- ababababregular copolymerabbaaabarandom copolymeraaaabbbbblock copolymer
- Control molecular weight
 - Impacts polydiversity:

- Overall molecular weight (MW) or mass
 - If a polymer has low MW, it acts like a fluid above T_q
 - If a polymer has high MW, it acts like a rubber above T_q
 - MW also determines mechanical properties, viscosity, rheology
- Control architecture

0

linear chain polymer

lightly branched polymer

"combed" polymer

"star polymer"

10.569, Synthesis of Polymers Prof. Paula Hammond

Lecture 1 Page 2 of 5

Citation: Professor Paula Hammond, 10.569 Synthesis of Polymers Fall 2006 course materials, MIT OpenCourseWare (http://ocw.mit.edu/index.html), Massachusetts Institute of Technology, Date.

Course Goals

Goal 1: Structural and architectural control

- To gain a sense of rational design and synthesis
- To develop an intuition about the impact of a structure on property
- The following two examples demonstrate how structure determines the polymer's physical and chemical properties:
 - Ex 1: polyamides (Kevlar® by DuPont)

- Kevlar®'s very low flexibility makes it a rigid structure
- The hydrogen bonding enhances rigidity and makes it solventresistent
- The long backbone gives it high mechanical strength
- In fact, Kevlar® has a liquid crystalline structure
- Ex 2: polydimethylsiloxane (PDMS)

- The longer Si—O bond makes PDMS very flexible
- CH₃ makes the polymer hydrophobic
- $T_g \approx -100^{\circ}C$

Goal 2: Apply knowledge to processes in industrial and commercial settings

- Determine which process is best for certain applications (Ex: there are ways to synthesize PDMS)
- There are variables in polymer approach, synthetic route, starting materials and/or catalysts, and solvent conditions

Goal 3: Awareness of new tools and approaches to materials design

- Less traditional approaches
- Functionalization of polymers
- Self-assembly approaches

10.569, Synthesis of Polymers Prof. Paula Hammond

Lecture 1 Page 3 of 5

Description of Molecular Weight in Polymers

Each MW can be represented as M_i

 N_i = number of molecules of MW = M_i

 w_i = weight fraction of given system of chains with MW= M_i

$$W_i = \frac{N_i M_i}{\sum N_i M_i}$$

 $\overline{M_n}$ = number average MW = $\frac{\text{total weight}}{\text{total # molecules in sample}} = \frac{\sum N_i M_i}{\sum N_i}$

$$\overline{M_{w}} = \text{weight average MW} = \frac{\sum (N_{i}M_{i})M_{i}}{\sum (N_{i}M_{i})} = \frac{\sum N_{i} (M_{i})^{2}}{\sum N_{i}M_{i}}$$

The following graph shows the relationship between w_i and m_i :

Polydispersity can be measured by PDI (polydispersity index): $z = \frac{M_w}{M_n} \ge 1.0$. z = 1.03 or 1.05 is considered close to monodisperse

10.569, Synthesis of Polymers Prof. Paula Hammond Lecture 1 Page 4 of 5

Types of Polymerization

A) Chain growth

- In chain growth, a monomer is activated and polymerization propagates by activating neighboring monomers. The process is very rapid and high MW polymers are achieved quickly.
- The following describes the chain growth reaction in which * represents the activated monomer M. This can be a free radical, negative charge, or positive charge:

1.	R*	+	M	\rightarrow \rightarrow	RM*
2.	RM*	+	M		RMM*
3.	 RM _n * Event th	+ at tern	M ninates	\rightarrow	$RM_{n+1}*$

B) Step growth

- In chain growth, bifunctional monomers are added systematically to form covalent bonds. It generally involves 2 (or more) functional groups: "a" and "b." Molecular weight increases "slowly" as dimers become trimers, which in turn become tetramers.
- Examples of polymers formed by chain growth: nylons, polyesters, polypeptides (proteins)
- [Handout] These are typical a and b groups:

$$a + b \rightarrow c + d \qquad \text{where } c = \text{covalent link} \\ d = \text{byproduct}$$
1.
$$a - a + b - b \rightarrow a - c - b + d$$

$$HO - C - R - C - OH + HO - R^{1} - OH \rightarrow (\text{dialcohol}) \rightarrow (\text{dialcohol})$$

$$HO - C - R - C - OH + HO - R^{1} - OH + H_{2}O$$

$$ester link$$
2.
$$a - c - b + a - a \rightarrow a - c - c - a$$
3.
$$a - c - c - a + b - c - c - c - a \rightarrow a(c)_{6}a + d$$

10.569, Synthesis of Polymers Prof. Paula Hammond Lecture 1 Page 5 of 5