10.569 Synthesis of Polymers Prof. Paula Hammond Lecture 2: Molecular Weight Control, Molecular Weight Determination in Equilibrium Step Condensation Polymerizations, Interchange Reactions: Effects on Processing and Product, Application Example: Common Polyesters

Step Growth Polymerization

2 functional groups: $a, b \rightarrow$ form new link c, may be a side product d

 $a-a + b-b \rightarrow a-c-b + d$

For example, if a—a is a diacid and b—b is a diol:

Polyester (one repeat unit consists of 2 structural units)

Degree of polymerization = number of monomer units or structural units incorporated in polymer chain = $\overline{p_n}$

 $\overline{M_n} = \frac{\overline{p_n} \cdot M_u}{2}$ where M_u = molecular weight (MW) of individual repeat units

Can also have a-b monomers:

$$HO - CH_2 - C OH \rightarrow OR'' - C - n$$

In this case:

• $R'' = CH_2$

• The repeat unit is the structural unit $\overline{M_n} = \overline{p_n} \cdot M_{\mu}$

Determining MW as a Function of Conversion

How do you determine MW as a function of conversion?

$$\overline{\rho_n} = \frac{\text{total initial # of monomer units}}{\text{total # of molecules remaining}} = \frac{N_o}{N_{total}}$$

Simple thought experiment:

50 monomer units	\int	25 а—а	$\sim \sim$
		25 b—b	•-•

If have 50% conversion

⇒ 25 a+b reactions ⇒ lose molecule w/each reaction (2 molecules become

1)

$$\overline{p_n} = \frac{50}{50 - 25} = 2$$

So π (conversion) can be related to $\overline{p_n}$.

 $(Na)_o$ = initial # of a reactive group = 2 (# of a-a monomers) $(Nb)_o$ = initial # of b reactive group = 2 (# of b-b monomers)

$$\pi_a = 1 - \frac{Na}{(Na)_a} \qquad \qquad \pi_b = 1 - \frac{Nb}{(Nb)_a}$$

Define $r = \frac{(Na)_o}{(Nb)_o}$

Define: *a* is minority functional group

Stoichiometric ratio

<u>∘</u> ≤ 1

Total # of functional groups initially present

$$N_{o} = (Na)_{o} + (Nb)_{o} = (Na)_{o} \left[1 + \frac{1}{r}\right]$$

At a given time t, have conversion π_a

$$N_t = \#$$
 of functional groups at time $t = (Na)_o (1 - \pi_a) + (Nb)_o - (Na)_o \pi_a$

Na

Nb

10.569, Synthesis of Polymers, Fall 2006 Prof. Paula Hammond Lecture 2 Page 2 of 6

$$N_{t} = (Na)_{o} \left(1 - 2\pi_{a} + \frac{1}{r} \right)$$

$$\therefore \qquad \overline{P_{n}} = \frac{N_{o}}{\frac{2}{N_{t}}} = \frac{N_{o}}{N_{t}} = \frac{1 + \frac{1}{r}}{1 - 2\pi_{a} + \frac{1}{r}} = \frac{1 + r}{1 - 2\pi r + r}$$

 $\pi_a = \pi$ (assume referring to minority)

Simple case: r = 1.0 (perfect stoichiometry)

At	$\pi = 0.995^*$	\rightarrow	$\overline{p_n} = 200$		
	$\pi = 0.99$	\rightarrow	$\overline{\rho_n} = 100$	m drops fast	
	$\pi = 0.98$	\rightarrow	$\overline{\rho_n} = 50$	p_n drops last	
	$\pi = 0.90$	\rightarrow	$\overline{p_n} = 10$	oligomer	♦

^{*}Can take a long time. First 95% takes same time as last 2-3%.

Must $\uparrow \pi$ to get high MW $\overline{p_n} = \frac{1}{1 - \pi}$

$$\overline{f} = \frac{1}{1-\pi}$$
 As $\pi \uparrow$, $\overline{p_n}$ explodes.

But, there is a problem:

Control of MW

How to control MW?

a) Control π (conversion)

b) Control stoichiometry:

Assume: e.g.
$$\pi = 1.0$$

$$\Rightarrow \overline{p_n} = \frac{1+\frac{1}{r}}{1-\frac{1}{r}} = \frac{1+r}{1-r}$$

Add excess of b—b End up "capping" chains w/b groups

10.569, Synthesis of Polymers, Fall 2006 Prof. Paula Hammond Lecture 2 Page 3 of 6

e.g. 1% excess of b-b

 \Rightarrow max $\overline{p_n}$ = 199

Can intentionally cap w/alcohol or ester for certain applications. Can use π , r to predict MW outcome of rxn.

Can also use monofunctional unit as an end capping agent:

a—a

١

b—b

b—x where x is a desired final group that can't react w/a or b e.g. phenol

x	polyurethanes: longer chain				
X	molecules				
x x	 surface groups 				

Here we redefine the ratio r:

Assume a—a b—b		$r = \frac{(Na)_o}{(Nb)_o + 2N_x}$		<pre>}</pre>	Caveat: (Na) _o = (Nb) _o a—a b—b for this to work.
are in equal quantity		where $N_x = \#$ of b-x molecules			

Same expression if you're using a—b monomers.

MW Distribution as a Function of Conversion:

Assumptions: 1. Equal reactivities for all a,b functional groups.

Reactivities are the same for short a—a and long polymer (length independence) in viscous fluid.

- 2. Perfect stoichiometry: r = 1
- 3. For ease of explanation, use a-b monomer $(\pi_a = \pi_b)$.

At a given time t, have conversion π Probability that an a group has reacted: $p = \pi$

10.569, Synthesis of Polymers, Fall 2006 Prof. Paula Hammond

Lecture 2 Page 4 of 6

(will use p, π interchangeably) Probability that a molecule has x structural units = \wp_x

x structural units \Rightarrow	(x-1)	# of a groups reacted		
	=		ح [Prob of this combination
	1	a group unreacted		

Prob of x-1 a groups reacted: p^{x-1} Prob of unreacted a: $(1-\pi)$ or (1-p)

So, $\wp_x = p^{x-1}(1-p)$

 \wp_x = number fraction of chains with degree of polymerization x

 $\wp_{x} = \frac{\# \text{ of } x \text{-length chains}}{\text{total } \# \text{ of chains}} = \frac{N_{x}}{N_{total}} = \frac{N_{x}}{N_{o} (1 - p)} = \frac{N_{x}}{N_{o} - N_{o} p}$ Every time a molecule reacts lose $N_{o}p$.

increase conversion \rightarrow narrower and broader

Flory-Shulz Distribution: Some Monomer Always Present

$$\overline{\rho_n} = \frac{\sum_x x N_x}{\sum_x N_x} = \sum x \wp_x = \sum x \rho^{x-1} (1-p)$$
$$\sum p^{x-1} = \frac{1}{1-p}$$

$$\sum x p^{x-1} = \frac{1}{(1-p)^2}$$

$$\overline{p_n} \Rightarrow \frac{1}{(1-p)}$$

10.569, Synthesis of Polymers, Fall 2006 Prof. Paula Hammond Lecture 2 Page 5 of 6

$$W_x = \frac{xN_x}{N_o} = x(1-p)^2 p^{x-1}$$

$$\overline{p_w} = \frac{1+p}{1-p} \text{ or } \frac{1+\pi}{1-\pi}$$

Result of using $\overline{p_w}$ expression and summations

10.569, Synthesis of Polymers, Fall 2006 Prof. Paula Hammond Lecture 2 Page 6 of 6