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VI. Porous Media 


Lecture 34: Transport in Porous Media 

4/29/2011 (corrected 5/4/12 MZB) 

Notes by MIT Student

1. Conduction 

In the previous lecture, we considered conduction of electricity (or heat conduction or mass 
diffusion) in a composite medium, where each component has a nonzero conductivity. In a 
porous medium, we focus on one “pore phase” and assign zero conductivity to the “matrix 
phase”. From the notation of the previous lecture, 

 1 = Ep = porosity 

(1 = (p = pore phase conductivity 

(i = O, for i > 1 

Note: the Hashin-Shtrikman and Wiener lower bounds are zero, since any volume fraction of 
nonconductive material can be distributed so as to completely block conduction through the 
porous medium (i.e. if there is no percolating path of the conductive phase). The upper bounds 
are 

Wiener =  1(1 = Ep(p(max anisotropic pores 

 Ep(1
  1    1 Ep   isotropic pores = (p= (p(max =  1(1  

  1   Ep � Ep  (1 � (1

where the last equation is for d=3 dimensions. Percolation model (which assumes isotropic 
media) gives the following scaling for Ep just above the critical point Eo, 

 (���o� Ep  Eo 

where the exponent t=2 is believed to have a universal value for any 3D model. 

A simple form which captures this effect is 

 Ep  Eo 
, Eo � Ep � 1 (p 

1 Eo(���o � 
O ,O � Ep � Eo 
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since  as .  

Note that this lies between the Hashin-Shtrikman bound and the lower bound. 
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hemical engineering, it is common to use the empirical Bruggeman formula 

! ! ! 

As show
𝜖!

n in the figure below, this lies close to the Hashin-Shtrikman upper bound, especially for 
large . Therefore, the Bruggeman formula could represent an isotropic medium with ample 
percolating pathways of unblocked pores, similar to the core-shell microstructure (composed of 
spheres with conducting shells and non-conducting cores) that attains the HS upper bound. This 
makes sense in porous electrodes, since they are often fabricated from grains and powders 
soaked in a liquid electrolyte, which effectively coats the particles and percolates through the 
system. Where this approximation breaks down is at low porosity, where percolation effects can 
become important with an increasing number of blocked “dead end” pores, and this is reflected 
in the lower Bruggeman conductivity compared to the HS upper bound (which is attained by 
microstructures without any blocked pores). 

𝜎!"#$ → 𝜎! 𝜖! → 1
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[Figure credit: Todd Ferguson]   Conductivity bounds and models in d=3 dimensions. 
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2. Diffusion 

The effective conductivity determines the macroscopic current density . In the case of 
diffusion, 

𝜕𝑐

the net flux is 𝐹 concentration in the 
in equilibrium, even if the porosity varies in space). Macroscopic conservation of mass requires

= −𝜎!𝛁𝑐, where c is the 
𝐽

pores 
= −𝜎𝛁

(which 
𝜙

is constant 
 

Where 

𝜕𝑡 + 𝛁 ∙ 𝐹 = 0

𝑐 = 𝜖

 

!𝑐

𝜕𝑐
𝑐 =

 

𝐷

is the volume

𝜕𝑡 = 𝜎!𝛁! 𝛁 𝑐

-averaged concentration. 

!

𝑜𝑟    
𝜕𝑐

 

𝜕𝑡 = 𝐷𝛁!

Where 𝐷 = !
!
!

!
 

𝑐

is the effective diffusivity in the porous medium. 

Note: the Wiener upper bound 𝐷 ≤ 𝐷!, since 𝜎 ≤ 𝜖!𝜎

𝜏

implies . Therefore, we can interpret the 
reduction of D in the pores via an effective extension of the path length for diffusion by a factor 
called tortuosity 

𝐿

!. 

! = 𝜏!𝐿

𝛁 = 𝜏

 

!𝛁! →
𝜕𝑐
𝜕𝑡 = 𝐷!𝛁!!𝑐

So 

𝐷 =
𝐷

 

𝜏
!

!
!  

we can recover the same diffusion equation as in the free solution only with a stretched 
spatial coordinate system. 

Thus, we arrive at the following interpretation of the diff

𝜎

usive mean conductivity. 

! =
𝐷
𝜏
! !

!
!
𝜖

 

Note: if 𝜎!is a tensor, then tortuosity is also a tensor given by 𝜏! = 𝐷!𝜖!𝜎!!!
!/!

. 

For the models and bounds above, we have the following tortuosity (noting that 𝜏! = 1 when 
): 𝜖! = 1
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τ p 
HS = 

d − ε p 

d −1 
= 

3 − ε p 

2 

WienerT = 1  (lower bound, attained by aligned stripes);p 

(lower bound for isotropic pores); 

T = E
1 4 (Bruggeman empirical formula);p 

1 l�E , Eo Ep 1p lp l�T���o 
� ,O Ep Eo 

Note: tortuosity makes no sense when conductivity becomes significantly reduced by loss of 
percolation, since it is not the longer path length but rather the many “dead ends” and few 
percolating paths that lower the conductivity. 

The figure below shows the tortuosity according to the above models 

τ p 

4 

Tp 

3 

2.5 

2 

1.5 

1 

0.5 

0 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9ε 

c ε 

Wiener 
Hashin−Shtrikman 
Percolation 
Bruggeman 

Ep 

Eo 

p
 

Figure: Tortuosity vs. porosity for bounds and models in d=3 dimensions [T. Ferguson] 
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3. Ion transport (neglect convection and electroosmotic flow) 

 

Microscopic Nernst

𝜕𝑐

-Planck equation in the pores (NOT Laplace’s equation as before): 

𝜕𝑡
! + 𝛁 ∙ 𝐹! = 0

𝐹

 

! = −𝐷!𝑐!𝛁𝜇

𝜇

! 

𝜇

! = 𝜇!/𝑘!𝑇 

! = 𝑘!𝑇 ln 𝛾!𝑐! + 𝑧!𝑒𝜙 

Poisson’s equation gives: 

Boundary condition (no reaction, f

−𝜀!∇!𝜙 = 𝜌 = ! 𝑧!𝑒𝑐! 

−𝜀

ixed surface charge): 

!𝑛 ∙ ∇𝜙 = 𝑞

Macroscopic PNP equation:

𝑛 ∙ 𝐹! = 0 

! 

𝜕𝑐

 

𝜕𝑡
! + 𝛁 ∙ 𝐹! = 0

𝐹! = −𝐷!𝑐

 

!𝛁𝜇! 

!  𝜇 ≅ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡,𝑎𝑐𝑟𝑜𝑠𝑠  𝑝𝑜𝑟𝑒𝑠  𝑎𝑛𝑑  𝑠𝑚𝑎𝑙𝑙  𝑙𝑒𝑛𝑔𝑡ℎ  𝑠𝑐𝑎𝑙𝑒𝑠, 𝑒𝑣𝑒𝑛  𝑡ℎ𝑜𝑢𝑔ℎ  𝑐  𝑎𝑛𝑑  𝜙  𝑣𝑎𝑟𝑦  𝑞𝑢𝑖𝑐𝑘𝑙𝑦.

Surface charge qs on the 
pore wall 
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𝐷𝑒𝑓𝑖𝑛𝑒  𝜌 = 𝑧!𝑒𝑐!

Where 

−𝛁 ∙ 𝜀∇𝜙 =

!

𝜌 + 𝜌

 

𝜌

! 

! = 𝑎!𝑞!, 

In the limit of the 

𝑎! =
!"#$  !"#$%&'  !"#!

!"#$%&
. 

double layer, 𝑐! ≅
 and 
𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  

:
𝑖𝑛
 
  𝑡ℎ𝑒  𝑝𝑜𝑟𝑒  𝑏𝑢𝑙𝑘  𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 𝑐 /𝜖

𝜙 ≅ 𝜙 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  𝑜𝑢𝑡𝑠𝑖𝑑𝑒  𝑑𝑜𝑢𝑏𝑙𝑒  𝑙𝑎𝑦𝑒𝑟 𝜀 → 0
! !, and 

𝜌 + 𝜌! = 0    𝑇ℎ𝑖𝑛  𝑑𝑜𝑢𝑏𝑙𝑒  𝑙𝑎𝑦𝑒𝑟

𝜌

 

!

This is

=
𝑠𝑢𝑟𝑓𝑎𝑐𝑒  𝑐ℎ𝑎𝑟𝑔𝑒

𝑣𝑜𝑙𝑢𝑚𝑒  

 just macroscopic neutrality condition. 
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