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IV. Transport Phenomena
 

Lecture 22: Transport in Bulk Electrolytes
 

  

Nernst-Planck Equations 

As introduced in the previous lecture, the flux of species i in a concentrated 
solution is 

EFi = Mici µi (1) 

according to linear irreversible thermodynamics, where the mobility is re
lated to the (tracer) diffusivity by the Einstein relation, 

Di
Mi = (2)

kB T 

As in our theory of Faradaic reactions, the diffusional electro-chemical poten
tial µi of an ionic species i is formally broken into chemical and electrostatic 
contributions, 

µi = kB T ln ai + zieφ (3) 

where φ is the mean electrostatic potential, and ai = γici is the chemical 
activity, and γi the activity coefficient. The flux density (number per area 
per time) is then given by the Nernst-Planck equation (NP), 

E = −Dchem EE (4)Fi i  ci + Mizie 

where EE = − φ is the electric field and 

∂ ln γi
Dchem = Di 1 + (5)

∂ ln ci 

is the chemical diffusivity. In a dilute solution (γi = 1, ai = ci), the NP flux 
takes the simple form, 

FEi = −Di( ci + zici φ̃) (6) 
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˜where φ = eφ/kBT is the dimensionless potential, scaled to the thermal
voltage. In the NP equation, the flux is decomposed into to contributions,
chemical diffusion due to concentrated gradients, and electromigration, or
drift, in the electric field.

Conservation of mass implies,

∂ci
+

∂t
∇ · ~(~uci + Fi) = Ri (7)

where ~u is the fluid velocity, which transports ions by convection leading
to a flux density ~uci, and Ri is the the bulk production rate of species
i by reactions. The latter is usually neglected in electrolytes, but it can
be important for aqueous solutions far from equilibrium, due to the water
self-ionization reaction, H+ +OH− ↔ H2O.

The same Nernst-Planck equations are also used to describe semiconduc-
tors, where electrons and holes play the role of ions, and the homogeneous
reaction can result from exciton (electron-hole) annihilation or production
(e.g. by absorption of sunlight in a solar cell).

2 Charge Transport in Electrolytes

The electrostatic charge density

ρe =
∑

zieφ (8)
i

and the electrical current density (charge per area per time) in the elec-
trolyte,

~ ~J = zie(~uci + Fi) (9)
i

involves sums over the ionic sp

∑
ecies, i = 1, 2, ..., N . Charge conservation

follows,
∂ρe ~+ J
∂t

∇ · =
∑

Ri = 0 (10)
i

where we assume that the bulk reactions do not produce any net charge
(only local charge transfer between molecules).

The current has three contributions,

~ ~ ~ ~J = Jc + Jd + Je (11)

where
~Jc = ρe~u (12)
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is the streaming current due to convection of charge,

~Jd = −
∑

(zieD
chem
i )

u

∇ci (13)

is the diffusion current, driven by concentration gradients, and

~ ~Je = σeE (14)

is the Ohmic current, due to electromigration (Ohm’s law) carried by the
ionic conductivity,

σe =
∑ ( i

(z e)2
z e)2Dici

i Mici =
∑

(15)
kBTi i

3 Bulk Electroneutrality

As we shall see in subsequent lectures, electrolytes are quasi-neutral in
“bulk” regions away from charged boundaries, in the sense that charge
fluctuations are much smaller than the total number of charges in a given
location,

|ρe| �
∑
i

|zi|eci (16)

As a result, we can set the bulk charge density to zero when computing ion
concentrations,

ρe =
∑

zieci = 0 (17)
i

and this condition implicitly defines the electrostatic potential. Equivalently,
we can ensure that no charge is created,

∂ρ− e
=

∂t
∇ · ~J = 0 (18)

A subtle consequence of quasi-electroneutrality is that the bulk electric
field generally does not satisfy Maxwell’s equations. In particular, in a linear
dielectric medium, one should properly impose Poisson’s equation, −ε∇2φ =
ρe (where ε is the permittivity) with an electrostatic boundary condition,
such as φ = V or n̂ · ε∇φ = qs, where qs is a surface charge. However, we
do not have the flexibility to satisfy these equations in a neutral electrolyte
,since φ is determined implicitly by ρe = 0. Electroneutrality would seem to
imply Laplace’s equation, ∇2 ~φ = 0, but this follows from ∇·J = 0 only in a
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uniform, neutral electrolyte, ci =constant. If concentration gradients exist,
then ∇2φ = 0 in a neutral electrolyte. The resolution of this paradox is
that there are always some small charge fluctuations, which produce electric
fields that lead to ionic fluxes that continuously neutralize the solution, over
very short length and time scales compared to macroscopic ionic transport.

4 Supporting Electrolyte

In many situations, one wants to enable the diffusion of an active ionic
species i = 1 without any significant electromigration. This can be achieved
adding a large excess of other, inert ions, comprising supporting electrolyte
(c1 � c2, .., cN ), whose concentration remains approximately constant dur-
ing the passage of a small current carried by the active species. In that case,
the large, nearly constant conductivity of the solution leads to small elec-
tric fields, which produce negligible electromigration of the active species,
so that convection and diffusion dominate1,

∂c1
+ ~u =

∂
· ∇c1 D1

t
∇2c1 (19)

(where we also assume incompressible flow ∇ · ~u = 0). This allows the
diffusion equation to be solved as the theoretical basis for electroanalytical
methods, such as cyclic voltammetry or chronoamperometry, in supported
electrolytes 2. Supporting electrolyte is also used in situations, such as
electroplating, where one wants to avoid ion concentration polarization and
limited current in the electrolyte (next lecture).

5 Binary Electrolyte

Consider a bulk binary electrolyte with cations of charge z+e and anions of
charge −z e. Quasi-neutrality allows us to define the bulk salt concentra-−
tion,

c = z+c+ = z c (20)− −

On the homework, we consider the general case of a concentrated solution,
so here we focus on the limit of a dilute solution (Dchem

i = Di = constant,
ai = ci), in which the NP conservation equations take the form,

∂c± ∇˜= Di

(
∇2ci ±∇ · (c φ) . (21)

∂t
±

1For a more detailed asymptotic analysis, due to Levich, see

)
J. Newman’s book.

2See Bard and Faulker.
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Subtracting these equations, we obtain the condition of charge conservation,

∂ρe ∂c+ ∂c
= z+

∂t
− z −

= 0 (22)
∂t

−
∂t

which implies
D D−∇ · c∇˜ +

( φ) =

Adding

(
− − 2

z+D+ + z D− −

)
∇ c (23)

the NP equations, we obtain the condition of neutral salt conserva-
tion,

∂c 1
=

∂t 2

(
∂c+ ∂c

z+ + z
−

∂t
−
∂t

)
(24)

1 ˜=
(

(D+ +D )∇2c+ (z+D+ − z D )∇ · (c∇φ) (25)
2

− − −

= D

)
∇2c (26)

where in the last step we use (23) and define the effective ambipolar diffu-
sivity for neutral salt,

(z+ + z )D
D =

− +D−
(27)

z+D+ + z D− −
Curiously, the salt concentration appears to diffuse as a neutral species,
even though each species experiences electromigration in opposite directions.
This remarkable cancellation will be clarified by an example in the next
lecture.

The ambipolar diffusivity can be expressed in more illuminating forms.
It is the harmonic mean of the individual ion diffusivites, weighted by the
charge of the opposite species,

1
=

(
z+

)
1 z 1

+

(
−

+ D−

)
(28)

D z+ + z D z + z− − +

which is dominated by the ion with the smaller diffusivity and/or smaller
charge. The reason is that the faster-diffusing or more highly charged ion
responds more quickly to the Coulomb force attracting it to the slower, less
highly charged ion, which thus controls the effective diffusivity of the neutral
solution. This fact can also understood by writing the ambipolar diffusivity
as the arithmetic mean of the ion diffusivities, weighted by the field mobility
of the opposite species,

D =
M+D +− M D− +

(29)
M+ +M−

where Mi = zieMi = zieDi/kBT is the drift velocity per electric field. (Mi

is the velocity per electrostatic force, zieE.)
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