
Charge transfer at metal electrodes (Quantum effects) 

1. Review on Marcus Theory 

Let’s consider a redox reaction shown on the following reaction coordinate:  

R-ne-O 

 

Figure 1 Reaction coordinate of reaction R-ne-O 

The reaction happens on the intersection of two parabolas which are used to 
approximate energy-coordination relationship of species. 

Last time we already derived the Marcus theory (assume one electron 
transferred) 

𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑘𝑘0𝑒𝑒
−
�𝜂𝜂�+𝜆𝜆��

2

4𝜆𝜆� = 𝑘𝑘0𝑒𝑒
−(𝑟𝑟𝜂𝜂+𝜆𝜆)2
4𝜆𝜆𝑘𝑘𝐵𝐵𝑇𝑇  

𝑘𝑘𝑜𝑜𝑜𝑜 = 𝑘𝑘0𝑒𝑒
−
�𝜂𝜂�−𝜆𝜆��

2

4𝜆𝜆� = 𝑘𝑘0𝑒𝑒
−(𝑟𝑟𝜂𝜂−𝜆𝜆)2
4𝜆𝜆𝑘𝑘𝐵𝐵𝑇𝑇  

𝜆𝜆 is the reorganization energy, which is the difference in 𝜇𝜇𝑟𝑟𝑜𝑜  when reactants and 
products are both reactants’ coordinate position or products’ coordinate position 
and the reactants and products have the same ground state energy. 
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Figure 2 A illustration of reorganization energy 

2. Quantum effects at the electrode 

There are two main quantum effects at the electrode:  

(1) Electron energy levels are quantized. Two states per energy level and only 
one electron per state (Pauli Exclusion Principle). There exists a distribution 
of electron energy so the using 𝑒𝑒Φ𝑟𝑟  as an approximation of electron energy 
is too rough. 

(2) Quantum tunneling (We will not discuss about it in this lecture). 

Fermi-Dirac distribution: 

Because of the Pauli Exclusion Principle, electrons cannot stay all in the same 
state. It is distributed on a variety of different states with different energy. For a 
fermion (electron is fermion), the energy distribution of electrons obeys Fermi-
Dirac distribution. The filling fraction at each state is determined by the state’s 
energy: 

𝑛𝑛𝑟𝑟𝐹𝐹𝐹𝐹 =
1

1 + 𝑒𝑒
𝜀𝜀−𝜇𝜇𝑒𝑒
𝑘𝑘𝐵𝐵𝑇𝑇

 

Where 𝑛𝑛𝑟𝑟𝐹𝐹𝐹𝐹 is the filling fraction of that state (A decimal number of 𝑛𝑛𝑟𝑟  doesn’t 
mean electrons are split. It can be viewed as the probability that an electron will 
occupy this state). 𝜇𝜇𝑟𝑟  is usually called Fermi-level, which is the chemical potential 
of electrons. 𝜀𝜀 is the electron energy at that state. 

𝜆𝜆 
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At 𝑇𝑇 = 0𝐾𝐾, all electrons occupy all states with energy levels just below 𝜇𝜇𝑟𝑟. For 
higher temperature, the filling fraction as a function of state’s energy is showed 
below: 

 

Figure 3 Fermi-Dirac distribution 

Another thing that needs to be mentioned is that states are not evenly distributed 
among different energy levels. 𝑛𝑛𝑟𝑟𝐹𝐹𝐹𝐹 must time another variable, the number of 
states per energy interval, to represent the probability density distribution of 
electrons as a function of energy. The number of states per energy interval is 
termed density of state (DOS), which is a function of energy. Strictly speaking, 
DOS of electrode should be both a function of energy and 𝜇𝜇𝑟𝑟. In an electrode 
reaction, the energy distribution of electrons are mainly shifted up and down 
equally with 𝜇𝜇𝑟𝑟  because of an applied potential. Thus DOS will only be a function 
of 𝜀𝜀 − 𝜇𝜇𝑟𝑟. Later in this lecture, we will non-dimensionalize electron energy using a 
new variable 𝑥𝑥 = 𝜀𝜀−𝜇𝜇𝑒𝑒

𝑘𝑘𝐵𝐵𝑇𝑇
 and then DOS will only be a function of 𝑥𝑥. (For details, see 

textbook: Bard, Allen J Electrochemical methods: fundamentals and applications 
2nd ed, page 125) The multiplication of DOS with 𝑛𝑛𝑟𝑟𝐹𝐹𝐹𝐹 is number of electrons 
occupying a certain energy level. 

T increases 

FD 
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𝑛𝑛𝑟𝑟(𝜀𝜀 − 𝜇𝜇𝑟𝑟) =
𝑔𝑔(𝜀𝜀 − 𝜇𝜇𝑟𝑟)

1 + 𝑒𝑒
𝜀𝜀−𝜇𝜇𝑒𝑒
𝑘𝑘𝐵𝐵𝑇𝑇

  

Where 𝑔𝑔(𝜀𝜀 − 𝜇𝜇𝑟𝑟) is the DOS at electron energy 𝜀𝜀, i.e. (𝜀𝜀 − 𝜇𝜇𝑟𝑟) deviation from 𝜇𝜇𝑟𝑟). 

Different materials have different structures of DOS (also called band structure).  

 

Figure 4 Band structure of different kinds of materials[1] 

For example, metal has high DOS at the Fermi-level but semimetal has a minimum 
DO there. 

 

3. Marcus-Hush-Chidsey Theory 

For reaction 

𝑂𝑂 + 𝑒𝑒− → 𝑅𝑅 

𝑒𝑒𝑒𝑒 = 𝜇𝜇𝑅𝑅 − (𝜇𝜇𝑂𝑂 + 𝜇𝜇𝑟𝑟) 

Previously we use 𝑒𝑒Φ𝑟𝑟  to denote 𝜇𝜇𝑟𝑟. Now we know it’s not correct. And 𝑒𝑒 now is 
not a constant. Denote: 

𝑥𝑥 =
𝜀𝜀 − 𝜇𝜇𝑟𝑟
𝑘𝑘𝐵𝐵𝑇𝑇

 

Which represents the deviation of electron energy with respect to 𝜇𝜇𝑟𝑟  scaled by 
thermal voltage. 𝑥𝑥 spans from a very negative value to a very positive value 
because of the distribution of energy. Chidsey modifies the Marcus theory with a 
generalized relationship taking into consideration of the quantum effects. The 
equation is called “Marcus-Hush-Chidsey” (MHC) Theory 
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𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀 = � 𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟𝑀𝑀𝑀𝑀𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀(𝑒𝑒� − 𝑥𝑥)𝑛𝑛𝑟𝑟(𝑥𝑥)𝑑𝑑𝑥𝑥
+∞

−∞
= � 𝑘𝑘0𝑒𝑒

−
�𝜂𝜂�−𝑜𝑜+𝜆𝜆��

2

4𝜆𝜆� 𝑛𝑛𝑟𝑟(𝑥𝑥)𝑑𝑑𝑥𝑥
+∞

−∞
 

𝑒𝑒� = 𝜂𝜂𝑟𝑟
𝑘𝑘𝐵𝐵𝑇𝑇

, �̃�𝜆 = 𝜆𝜆
𝑘𝑘𝐵𝐵𝑇𝑇

 

Note: 𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟𝑀𝑀𝑀𝑀𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀(𝑒𝑒� − 𝑥𝑥) is not a notation for multiplication. It means plugging in 𝑒𝑒� −
𝑥𝑥 instead of 𝑒𝑒� into the Marcus theory expression. 

This is basically a weighted average taking into account the energy distribution of 
electron. And the 𝑒𝑒� in Marcus theory now is replaced by a non-constant variable 
(𝑒𝑒� − 𝑥𝑥) and get averaged across all 𝑥𝑥.  

Assume 𝑔𝑔(𝜀𝜀) = 1 across the dominant part of this integral (if you plot function 

𝑦𝑦 = 𝑘𝑘0𝑒𝑒
−�𝜂𝜂�−𝑥𝑥+𝜆𝜆

��
2

4𝜆𝜆�  you will find it has a dominant region where function value is 
relatively large and contributes more to the integral) and the electrode is a Fermi-
Dirac metal, this integral becomes: 

𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀 = �
𝑘𝑘0𝑒𝑒

−
�𝜂𝜂�−𝑜𝑜+𝜆𝜆��

2

4𝜆𝜆�

1 + 𝑒𝑒𝑜𝑜 𝑑𝑑𝑥𝑥
+∞

−∞
 

𝑘𝑘𝑜𝑜𝑜𝑜𝑀𝑀𝑀𝑀𝑀𝑀 = �
𝑘𝑘0𝑒𝑒

−
�𝜂𝜂�+𝑜𝑜+𝜆𝜆��

2

4𝜆𝜆�

1 + 𝑒𝑒𝑜𝑜 𝑑𝑑𝑥𝑥
+∞

−∞
 

Again we have the De Donder relationship. 

𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑒𝑒−𝜂𝜂�𝑘𝑘𝑜𝑜𝑜𝑜𝑀𝑀𝑀𝑀𝑀𝑀  

Which is always a good check for the validity of a new model. 
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Using Marcus-Hush-Chidsey Theory, a typical Tafel plot is shown below.

Figure 5 relationship between overpotential and reaction rate for LiFeO4 electrode in Li-ion battery[2] 

For very large overpotential limit, most of the electrons participating in electron 
transfer are “cold electrons” which has very small 𝑥𝑥.  

 

Figure 6 A illustration of “hot” and “cold” electrons  

As overpotential increases, the trend 
in oxidized state make cold electrons 
dominate electron transfer. 

This gives a further simplification 
since 1+𝑒𝑒𝑜𝑜 is roughly 1 only. 

Excess chemical potential 
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Tafel plot removed due to copyright restrictions. See: Figure 4 in Bai, P., and
M. Z. Bazant. "Charge Transfer Kinetics at the Solid-solid Interface in Porous
Electrodes." Nature Communications 5, no. 3585 (2014).

http://www.nature.com/ncomms/2014/140403/ncomms4585/abs/ncomms4585.html
http://www.nature.com/ncomms/2014/140403/ncomms4585/abs/ncomms4585.html


lim
𝜂𝜂→∞

𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑘𝑘0 �
𝑘𝑘0𝑒𝑒

−
�𝜂𝜂�−𝑜𝑜+𝜆𝜆��

2

4𝜆𝜆�

1 + 𝑒𝑒𝑜𝑜 𝑑𝑑𝑥𝑥
+∞

−∞
 

≈ 𝑘𝑘0 ∫ 𝑒𝑒−
�𝜂𝜂�−𝑥𝑥+𝜆𝜆��

2

4𝜆𝜆�
+∞
−∞ 𝑑𝑑𝑥𝑥  

(Because cold electrons dominate the integral so 𝑒𝑒𝑜𝑜 ≪ 1) 

Let 𝑢𝑢 = 𝑜𝑜−𝜂𝜂�−𝜆𝜆�

2�𝜆𝜆�
 

lim
𝜂𝜂→∞

𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑘𝑘02��̃�𝜆� 𝑒𝑒−𝑀𝑀2𝑑𝑑𝑢𝑢
+∞

−∞
= 2𝑘𝑘0�𝜋𝜋�̃�𝜆 

The constant means plot will finally reach horizontal which is shown in figure 5 
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