18.366 Random Walks and Diffusion, Spring 2005
10.95/18.325 Mathematical Modeling of Electrochemical Systems, Spring 2009

Escape from a Symmetric Trap

Notes by MIT Student (and MZB)

Problem Statement. (Exam 2, 18.366, 2005) Consider a diffusing particle which feels a conservative force, $f(x)=-\phi^{\prime}(x)$, in a smooth, symmetric potential, $\phi(x)=\phi(-x)$, causing a drift velocity, $v(x)=b f(x)$, where $b=D / k T$ is the mobility and D is the diffusion constant. If the particle starts at the origin, then PDF of the position, $P(x, t)$, satisfies the Fokker-Planck equation,

$$
\frac{\partial P}{\partial t}+\frac{\partial}{\partial x}(v(x) P(x, t))=D \frac{\partial^{2} P}{\partial x^{2}}
$$

with $P(x, 0)=\delta(x)$. Suppose that the potential has a minimum $\phi=0$ at $x=0$ with $\phi^{\prime \prime}(0)=K_{0}>0$ and two equal maxima $\phi=E>0$ at $x= \pm x_{1}$ with $\phi^{\prime \prime}\left(x_{1}\right)=-K_{1}<0$. Let τ be the mean first passage time to reach one of the barriers at $x= \pm x_{1}$ (and then escape from the well with probability $1 / 2$).

1. Derive the general formula

$$
\tau=\frac{1}{D} \int_{0}^{x_{1}} d x e^{\phi(x) / k T} \int_{0}^{x} d y e^{-\phi(y) / k T}
$$

2. In the low temperature limit, $k T / E \rightarrow 0$, calculate the leading-order asymptotics of the escape rate, $R=1 / 2 \tau \sim R_{0}(T)$, using the saddle-point method. Verify the classical result of Kramers: $R_{0}(T) \propto e^{-E / k T}$.
3. Calculate the first correction to the Kramers escape rate:

$$
R(T) \sim R_{0}(T)\left(1+a \frac{k T}{E}\right)
$$

SOLUTION

1. Mean escape time. We have:

$$
\frac{\partial P}{\partial t}=D \frac{\partial^{2} P}{\partial x^{2}}+\frac{D}{k T} \frac{\partial}{\partial x}\left(\phi^{\prime}(x) P(x, t)\right)
$$

where $P(x, t)=p(x, t \mid 0,0)$ within initial condition at the bottom of the well, $P(x, 0)=\delta(x)$, and absorbing boundary conditions at the exit points, $P\left(\pm x_{1}, t\right)=0$. We can write:

$$
\begin{equation*}
\frac{\partial P}{\partial t}=\mathcal{L}_{x} P \tag{1}
\end{equation*}
$$

where the spatial operator L_{x} can be simplified using an integrating factor:

$$
\begin{equation*}
\mathcal{L}_{x}=D \frac{\partial}{\partial x}\left[e^{-\phi(x) / k T} \frac{\partial}{\partial x}\left(e^{\phi(x) / k T}\right)\right] \tag{2}
\end{equation*}
$$

The probability $S(t)$ of realization which have started at $x=0$ and which have not yet reached $x= \pm x_{1}$ up to time t is given by:

$$
S(t)=\int_{-x_{1}}^{x_{1}} p(x, t \mid 0,0) \mathrm{d} x=\int_{-x_{1}}^{x_{1}} P(x, t) \mathrm{d} x
$$

The distribution function $f(t)$ for the first passage time is then given by:

$$
f(t)=\frac{\partial}{\partial t} 1-S(t)=-\frac{\partial S}{\partial t}=-\int_{-x_{1}}^{x_{1}} \frac{\partial P}{\partial t} \mathrm{~d} x
$$

The mean escape time is then given by 1 :

$$
\tau=\int_{0}^{\infty} t f(t) \mathrm{d} t=\int_{-x_{1}}^{x_{1}} g_{1}(x) \mathrm{d} x \quad \text { with } \quad g_{1}(x)=-\int_{0}^{\infty} t \frac{\partial P}{\partial t} \mathrm{~d} t
$$

Performing an integration by parts (assuming that $P(x, t)$ decays quickly enough in time that $\left.\lim _{t \rightarrow \infty} t P(x, t)=0\right)$ gives:

$$
g_{1}(x)=\int_{0}^{\infty} P(x, t) \mathrm{d} t
$$

By applying the operator \mathcal{L}_{x} on both sides of this relation, we get:

$$
\mathcal{L}_{x} g_{1}(x)=\int_{0}^{\infty} \mathcal{L}_{x} P(x, t) \mathrm{d} t=\int_{0}^{\infty} \frac{\partial P}{\partial t} \mathrm{~d} t=-P(x, 0)=-\delta(x)
$$

where we have used (1). Using the expression (2) for \mathcal{L}_{x}, it is easy to solve:

$$
g_{1}(x)=\frac{e^{-\phi(x) / k T}}{D} \int_{x}^{x_{1}} e^{\phi(y) / k T}\left[\int_{0}^{y} \delta(z) \mathrm{d} z\right] \mathrm{d} y
$$

Now we can express the mean escape time:

$$
\begin{aligned}
\tau & =\int_{-x_{1}}^{x_{1}} g_{1}(x) \mathrm{d} x=2 \int_{0}^{x_{1}} g_{1}(x) \mathrm{d} x \\
& =\frac{1}{D} \int_{0}^{x_{1}} e^{-\phi(x) / k T}\left[\int_{x}^{x_{1}} e^{\phi(y) / k T} \mathrm{~d} y\right] \mathrm{d} x
\end{aligned}
$$

Switch the order of integration, to get finally:

$$
\tau=\frac{1}{D} \int_{0}^{x_{1}} \mathrm{~d} x e^{\phi(x) / k T} \int_{0}^{x} \mathrm{~d} y e^{-\phi(y) / k T}
$$

2. Kramers Mean Escape Rate. We use the saddle-point asymptotics (just Laplace's method on the real axis, in this case) to evaluate the integrals as $k T \rightarrow 0$. Factors of $1 / 2$ arise since the maximum and minimum occur at the endpoints.

$$
\int_{0}^{x} e^{-\phi(y) / k T} \mathrm{~d} y \sim \frac{1}{2} \sqrt{\frac{2 \pi k T}{\phi^{\prime \prime}(0)}} e^{-\phi(0) / k T}=\sqrt{\frac{\pi k T}{2 K_{0}}}
$$

So that:

$$
\int_{0}^{x_{1}} \mathrm{~d} x e^{\phi(x) / k T} \int_{0}^{x} \mathrm{~d} y e^{-\phi(y) / k T} \sim \sqrt{\frac{\pi k T}{2 K_{0}}} \int_{0}^{x_{1}} e^{\phi(x) / k T} \mathrm{~d} x
$$

with:

$$
\int_{0}^{x_{1}} e^{\phi(x) / k T} \mathrm{~d} x \sim \frac{1}{2} \sqrt{-\frac{2 \pi k T}{\phi^{\prime \prime}\left(x_{1}\right)}} e^{\phi\left(x_{1}\right) / k T}=\sqrt{\frac{\pi k T}{2 K_{1}}} e^{E / k T}
$$

Escape occurs with probability $1 / 2$ from either of 2 activation barriers, so

$$
R=2 \frac{1}{2} \frac{1}{\tau}=\frac{1}{\tau} \sim R_{0}(T)=\frac{2 D \sqrt{K_{0} K_{1}}}{\pi k T} e^{-E / k T} \propto e^{-E / k T}
$$

[^0]3. First Correction to the Kramers Escape Rate. In the next derivation, we will use the following relation:
\[

$$
\begin{aligned}
\int_{-\infty}^{+\infty} e^{-a x^{2}+b x^{3}+c x^{4}} \mathrm{~d} x & \sim \int_{-\infty}^{+\infty}\left(1+b x^{3}+c x^{4}+\frac{b^{2} x^{6}}{2}\right) e^{-a x^{2}} \mathrm{~d} x \\
& =\sqrt{\frac{\pi}{a}}\left(1+\frac{3}{4} \frac{c}{a^{2}}+\frac{15}{16} \frac{b^{2}}{a^{3}}\right)
\end{aligned}
$$
\]

Using saddle-point asymptotics with the previous formula:

$$
\int_{0}^{x} e^{-\phi(y) / k T} \mathrm{~d} y \sim \frac{1}{2} \sqrt{\frac{2 \pi k T}{\phi^{\prime \prime}(0)}}\left(1-\frac{k T}{8} \frac{\phi^{(4)}(0)}{\left[\phi^{\prime \prime}(0)\right]^{2}}+\frac{5 k T}{24} \frac{\left[\phi^{(3)}(0)\right]^{2}}{\left[\phi^{\prime \prime}(0)\right]^{3}}\right) e^{-\phi(0) / k T}
$$

Since the well is symmetric, $\phi^{(3)}(0)=0$, we end up with:

$$
\int_{0}^{x} e^{-\phi(y) / k T} \mathrm{~d} y \sim \sqrt{\frac{\pi k T}{2 K_{0}}}\left(1-\frac{k T}{8} \frac{M_{0}}{K_{0}^{2}}\right)
$$

with $M_{0}=\phi^{(4)}(0)$. The same way:

$$
\int_{0}^{x_{1}} e^{\phi(x) / k T} \mathrm{~d} x \sim \frac{1}{2} \sqrt{-\frac{2 \pi k T}{\phi^{\prime \prime}\left(x_{1}\right)}}\left(1+\frac{k T}{8} \frac{\phi^{(4)}\left(x_{1}\right)}{\left[\phi^{\prime \prime}\left(x_{1}\right)\right]^{2}}-\frac{5 k T}{24} \frac{\left[\phi^{(3)}\left(x_{1}\right)\right]^{2}}{\left[\phi^{\prime \prime}\left(x_{1}\right)\right]^{3}}\right) e^{\phi\left(x_{1}\right) / k T}
$$

that we write:

$$
\int_{0}^{x_{1}} e^{\phi(x) / k T} \mathrm{~d} x \sim \sqrt{\frac{\pi k T}{2 K_{1}}}\left(1+\frac{k T}{8} \frac{M_{1}}{K_{1}^{2}}-\frac{5 k T}{24} \frac{L_{1}^{2}}{K_{1}^{3}}\right) e^{E / k T}
$$

with $L_{1}=\phi^{(3)}\left(x_{1}\right)$ and $M_{1}=\phi^{(4)}\left(x_{1}\right)$. We write then:

$$
\begin{aligned}
\tau & \sim \frac{1}{R_{0}(T)}\left(1-\frac{k T}{8} \frac{M_{0}}{K_{0}^{2}}\right)\left(1+\frac{k T}{8} \frac{M_{1}}{K_{1}^{2}}-\frac{5 k T}{24} \frac{L_{1}^{2}}{K_{1}^{3}}\right) \\
& \sim \frac{1}{R_{0}(T)}\left[1+\frac{k T}{8}\left(\frac{M_{1}}{K_{1}^{2}}-\frac{M_{0}}{K_{0}^{2}}-\frac{5}{3} \frac{L_{1}^{2}}{K_{1}^{3}}\right)\right]
\end{aligned}
$$

that is:

$$
R(T) \sim R_{0}(T)\left[1-\frac{k T}{8}\left(\frac{M_{1}}{K_{1}^{2}}-\frac{M_{0}}{K_{0}^{2}}-\frac{5}{3} \frac{L_{1}^{2}}{K_{1}^{3}}\right)\right]
$$

with:

$$
\begin{array}{lll}
K_{0}=\phi^{\prime \prime}(0) & L_{1}=\phi^{(3)}\left(x_{1}\right) & M_{0}=\phi^{(4)}(0) \\
K_{1}=-\phi^{\prime \prime}\left(x_{1}\right) & & M_{1}=\phi^{(4)}\left(x_{1}\right)
\end{array}
$$

MIT OpenCourseWare
http://ocw.mit.edu

10.626 Electrochemical Energy Systems

Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

[^0]: ${ }^{1}$ The function $g_{1}(x)$ from 10.95 Lecture 11 is denoted $g_{0}(x)$ in 18.366 Lecture 18 from 2005, and some of this derivation can also be found in both sets of scribe notes.

