VI. Electrokinetics

Lecture 30: Linear Electrokinetic Phenomena

Notes by MIT Student (and MZB)

1 Linear Electrokinetic Resonse of a Nanochannel

We start with the system in equilibrium

$$
\begin{aligned}
Q & =0 \\
I & =0 \\
\varepsilon \nabla^{2} \psi & =\rho(\psi) \\
\nabla p_{E} & =-\rho_{e q} \nabla \psi
\end{aligned}
$$

Where p_{e} is the electrostatic pressure.
Now, consider applyig a small perturbation $\Delta P, \Delta V$ and calculate linear response, and assume diffuse charge does not change:

$$
\begin{aligned}
\phi(x, y, z) & =\underbrace{\psi(x, y)}_{\text {equilibrium potential profile }}-\underbrace{E_{0} z \hat{z}}_{\text {small perturbation: axial electric field }} \\
p(x, y, z) & =p_{E}(x, y)-G_{0} z \hat{z} \\
\nabla p & =-\nabla_{\perp} p_{E}+\underbrace{G_{0} \hat{z}}_{\text {small }}
\end{aligned}
$$

The transverse gradient $\nabla_{\perp}=\frac{\partial}{\partial x} \hat{x}+\frac{\partial}{\partial y} \hat{y}$. The Poisson equation is now:

$$
\rho=-\varepsilon \nabla^{2} \phi=-\varepsilon \nabla_{\perp}^{2} \psi=\rho_{e q}(\psi)
$$

The full PDES:

$$
\begin{aligned}
\rho & =-\varepsilon \nabla^{2} \phi \\
\nabla p & =\eta \nabla^{2} \vec{u}+\rho \vec{E}
\end{aligned}
$$

reduce to

$$
\begin{aligned}
\rho_{e q}(\psi) & =-\varepsilon \nabla_{\perp}^{2} \psi \\
-G_{0} & =\eta \nabla_{\perp}^{2} \vec{u}-\varepsilon\left(\nabla_{\perp}^{2} \psi\right) E_{0}
\end{aligned}
$$

Let $u=u_{E}+u_{p}$; the velocity has electrosmotic and pressure driven components, where:

$$
\begin{align*}
-G_{0} & =\eta \nabla_{\perp}^{2} \overrightarrow{u_{p}} \tag{1}\\
\varepsilon\left(\nabla_{\perp}^{2} \psi\right) E_{0} & =\eta \nabla_{\perp}^{2} \overrightarrow{u_{E}} \tag{2}
\end{align*}
$$

To solve this, we have

$$
\overrightarrow{u_{E}}=\frac{\varepsilon(\psi-\varphi)}{\eta} E_{0}
$$

where we introduce an another harmonic function, $\nabla_{\perp}^{2} \varphi=0$ which satisfies $\varphi=\psi$ on the boundary (no slip). For a symmetric cross section (e.g. parallel plates or a cylindrical pore), the potential of the surface is constant by symmetry, so $\varphi=\zeta=$ constant (since the unique solution of Laplace's equation with constant Dirichlet boundary condition is a constant function).

1.1 Pressure driven flow

$$
Q_{p}=\int_{A} u_{p} d x d y \equiv A k_{p} G_{0}
$$

where k_{p} is hydrodanmic permeability, eg $k_{p}=\frac{h^{2}}{12 \eta}$ for parallel plates. Alternatively,

$$
Q_{p}=K_{p} \Delta P
$$

where

$$
\begin{aligned}
G_{0} & =-\frac{\Delta P}{L} \\
K_{p} & =\frac{A k_{p}}{L}
\end{aligned}
$$

1.2 Electrical current

$$
\begin{aligned}
& I_{E}=\int_{A} \sigma E_{0} d x d y \\
= & A k_{E} E_{0}=K_{E} \Delta V
\end{aligned}
$$

where

$$
\sigma(\psi)=\text { axial conductivity }=\frac{e^{2}}{k_{B} T}\left(z_{+}^{2} D_{+} c_{+}(\psi)+z_{-}^{2} D_{-} c_{-}(\psi)\right)
$$

for a binary electrolyte, and $c_{ \pm}=$equilibrium ion profiles.

1.3 Electro-osmotic flow

$$
\begin{aligned}
Q_{E} & =\int_{A} u_{E} d x d y \\
& =\frac{\varepsilon}{\eta} E_{0} \int_{A}(\psi-\varphi) d x d y \\
& \equiv A k_{E O} E_{0} \\
& =K_{E O} \Delta V
\end{aligned}
$$

where

$$
\begin{aligned}
K_{E O} & =\frac{\varepsilon}{\eta L} \int_{A}(\psi-\varphi) d x d y \\
E_{0} & =\frac{-\Delta V}{L} \\
K_{E O} & =\frac{A k_{E O}}{L}
\end{aligned}
$$

1.4 Streaming current

$$
\begin{aligned}
I_{p} & =\int_{A} \rho u_{p} d x d y \\
& =-\varepsilon \int_{A}\left(\nabla_{\perp}^{2} \psi\right) u_{p} d x d y \\
& =-\varepsilon \int_{A}\left(\nabla_{\perp}^{2}(\psi-\varphi)\right) u_{p} d x d y \\
& =-\varepsilon \int_{A}(\psi-\varphi) \nabla_{\perp}^{2} u_{p} d x d y \\
& =-\frac{\varepsilon}{\eta} \int_{A}(\psi-\varphi) G_{0} d x d y \\
& \equiv A k_{S C} G_{0} \\
& =K_{S C} \Delta P
\end{aligned}
$$

In the fourth line, we make use of the identify, $\int\left(\nabla^{2} f\right) g d x d y=\int f\left(\nabla^{2} g\right) d x d y$ if f and g vanish on the boundary ${ }^{1}$, which is the case for the pressure driven flow u_{p} and the electro-osmotic flow $u_{e} \sim \psi-\varphi$.

Thus we have that

$$
K_{S C}=K_{E O}
$$

(Onsager relation)
This result is very general, for any charge distribution $\rho_{e}(\psi)$ and any crosssectional geometry.

2 General Linear Electrokinetics

For any small disturbance (linear), the driving forces and resulting fluxes can be expressed as:

$$
\left(\begin{array}{c}
\text { fluxes }
\end{array}\right)=\left(\begin{array}{c}
\text { symmetrix } \\
\text { matrix } \\
\mathbf{K}=\mathbf{K}^{T}
\end{array}\right)\left(\begin{array}{c}
\text { gradients } \\
\text { thermodynamic } \\
\text { forces }
\end{array}\right)
$$

[^0]Specifically, for a nanochannel,

$$
\binom{Q}{I}=\left(\begin{array}{cc}
K_{p} & K_{E O} \\
K_{E O} & K_{E}
\end{array}\right)\binom{\Delta P}{\Delta V}
$$

With the Onsager relations $\mathbf{K}=\mathbf{K}^{T}$. Onsager (1931) derived this relation for linear response of a general system near thermal equilibrium, assuming local, microscopic time reversibility of the equaitons of motion. Here we see it emerge explicitly for linear electrokinetic response in a nanochannel.

MIT OpenCourseWare
http://ocw.mit.edu

10.626 Electrochemical Energy Systems

Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

[^0]: ${ }^{1}$ Proof: For volume V and surface $S, \int_{V}\left(\nabla^{2} f\right) g d V=\int_{V}(\nabla \cdot(g \nabla f)-\nabla f \cdot \nabla g) d V=$ $\oint_{S} \hat{n} \cdot(g \nabla f) d S-\int_{V} \nabla f \cdot \nabla g d V($ divergence theorem $)=\oint_{S} \hat{n} \cdot(g \nabla f-f \nabla g) d S+\int_{V} f \nabla^{2} g d V$. The surface integral vanishes if f and g vanish on the boundary. This is a generalization of integration by parts.

