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Lithium ion batteries 
Equation of lithium oxidation, typically the anode 

𝐿𝑖 ⇌ 𝐿𝑖 + 𝑒−, 𝑛 = 1

Where n is the number of electrons exchanged in the reaction. 

Equation of intercalation into a host material M, typically the cathode 

𝐿𝑖+ + 𝑒− + 𝑠 ∙ 𝑀 → 𝐿𝑖𝑀𝑠

Lattice gas model of lithium intercalation in host layered oxide 

Gibbs free energy of electrochemical reactions 

𝐺 =  𝐻 − 𝑇𝑆 + ∑ 𝑧𝑖𝑒𝜙

𝑖

with zi, e, and ɸ respectively the ion valence, the electron charge, and the mean electrostatic potential 
applied at the electrode.  

Under charge conservation for a mono-ionic system such as Li-Ion batteries. 

𝑁 = ∑ 𝑧𝑖

𝑖

Phase entropy as a function of lithium filling in the layered oxide 

𝑆 = 𝐾𝐵 ln(Ω) ,   𝐵𝑜𝑙𝑡𝑧𝑚𝑎𝑛 𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑒𝑛𝑡𝑟𝑜𝑝𝑦

With Ω the configuration multiplicity (number of ways the inserted lithium cations could be arranged in 
the host lattice).  

Under the reasonable assumption of indistinguishable lithium cations, the configuration multiplicity of N 
lithium cations into the host material with Ns effective total number of sites follows the combinatorial 
equation below: 
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Ω = (
𝑁𝑠

𝑁
) =  

𝑁𝑠!

𝑁! (𝑁𝑠 − 𝑁)!
,   𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦 𝑜𝑓 𝑁 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑜𝑛 𝑁𝑠 𝑠𝑖𝑡𝑒𝑠 

Note: Ns is the effective number of lattice sites accounting for exclusions rules. 

Stirling approximation 

Simplification of the configuration necessitates the Stirling approximation of the logarithm of a factorial: 

ln(𝐴!) = 𝐴 ln(𝐴) − 𝐴,   𝑆𝑡𝑖𝑟𝑙𝑖𝑛𝑔 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 

Readers are directed to the following website for proof to the above approximation: 
http://mathworld.wolfram.com/StirlingsApproximation.html 

Hence, 

𝑆 = 𝐾𝐵{ln (𝑁𝑠!) − ln(𝑁!) − ln[(𝑁𝑠 − 𝑁) !]}

= 𝐾𝐵{𝑁𝑠 ln 𝑁𝑠 − 𝑁𝑠 − 𝑁𝑙𝑛𝑁 + 𝑁 − (𝑁𝑠 − 𝑁) ln(𝑁𝑠 − 𝑁) + (𝑁𝑠 − 𝑁)}

= 𝐾𝐵{𝑁𝑠 ln 𝑁𝑠 − 𝑁𝑙𝑛𝑁 − (𝑁𝑠 − 𝑁) ln(𝑁𝑠 − 𝑁)}

= 𝐾𝐵{𝑁𝑠[𝑙𝑛𝑁𝑠 − ln(𝑁𝑠 − 𝑁)] + 𝑁[−𝑙𝑛𝑁 + ln(𝑁𝑠 − 𝑁)]}

= 𝐾𝐵 {−𝑁𝑠 ∙ 𝑙𝑛
𝑁𝑠 − 𝑁

𝑁𝑠
+ 𝑁 ∙ 𝑙𝑛

𝑁𝑠 − 𝑁

𝑁
} 

Let x be the fraction of sites occupied by cations such that 

𝑥 =
𝑁

𝑁𝑠
 

Then, 

𝑆 = 𝐾𝐵𝑁𝑠 {𝑥 ∙ ln (
1

𝑥
− 1) − ln (1 − 𝑥)} 

𝑆 = −𝐾𝐵𝑁𝑠{𝑥 ∙ ln(𝑥) + (1 − 𝑥) ∙ ln (1 − 𝑥)} 

And  

𝐺 =  𝐻 − 𝑇𝑆 + 𝑁𝑒𝜙, 𝐺𝑖𝑏𝑏𝑠 𝑓𝑟𝑒𝑒 𝑒𝑛𝑒𝑟𝑔𝑦 𝑜𝑓 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑐ℎ𝑒𝑚𝑖𝑐𝑎𝑙 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 

𝑔 =
𝐺

𝑁𝑠
=

𝐻

𝑁𝑠
− 𝑇

𝑆

𝑁𝑠
+

𝑁

𝑁𝑠
𝑒𝜙 = ℎ − 𝑇𝑠 + 𝑥𝑒𝜙,   𝑓𝑟𝑒𝑒 𝑒𝑛𝑒𝑟𝑔𝑦 𝑝𝑒𝑟 𝑠𝑖𝑡𝑒 

𝜇 =
𝑑𝑔

𝑑𝑥
=

𝑑ℎ

𝑑𝑥
− 𝑇

𝑑𝑠

𝑑𝑥
+ 𝑒𝜙 

𝜇 =
𝑑ℎ

𝑑𝑥
+ 𝐾𝐵𝑇 ∙ ln (

𝑥

1 − 𝑥
) + 𝑒𝜙, 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑐ℎ𝑒𝑚𝑖𝑐𝑎𝑙 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑓𝑜𝑟 𝑠𝑖𝑛𝑔𝑙𝑒 𝑣𝑎𝑙𝑒𝑛𝑡 𝑐𝑎𝑡𝑖𝑜𝑛 

For a multivalent cation with valence number “z”, it is straightforward to show that the electron energy 
term is scaled by “z” such that: 

𝜇 =
𝑑ℎ

𝑑𝑥
+ 𝐾𝐵𝑇 ∙ ln (

𝑥

1 − 𝑥
) + 𝑧𝑒𝜙, 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑐ℎ𝑒𝑚𝑖𝑐𝑎𝑙 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑓𝑜𝑟 𝑚𝑢𝑙𝑡𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑐𝑎𝑡𝑖𝑜𝑛 

It follows then that 
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Reactants activity: 

Generally, the chemical potential of a species is related to the entropic term of the chemical potential. 

𝜇𝑒𝑛𝑡𝑟𝑜𝑝𝑖𝑐
𝑖 = 𝐾𝐵𝑇𝑙𝑛(𝑎𝑖) 

Dilute solution approximation 

The assumption of dilute solution states that the filling fraction is much less than 1. This results in the 
following simplified expression for the entropic term of the chemical potential. 

𝜇𝑒𝑛𝑡𝑟𝑜𝑝𝑖𝑐 = 𝐾𝐵𝑇𝑙𝑛(𝑥) 

And thus,  

𝑎𝑖 = 𝑥 =
𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑐

𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑟𝑒𝑓
 

Note: cref is usually defined at standard conditions (one molar ion contraction or 1 atm gas pressure)  

Under concentrated (but still non-interacting, ideal) solution conditions, a non-neglible excess chemical 
potential term appears due the configurational entropy of unoccupied sites. 

𝜇𝑒𝑥𝑐𝑒𝑠𝑠 = 𝐾𝐵𝑇𝑙𝑛(𝛾) 

Lumping the dilute solution and the excess interaction-induced entropy, we derive that under non-ideal 
conditions, species activities have to be modified to  

𝑎𝑖 = 𝛾 ∙ 𝑥 𝑤𝑖𝑡ℎ 𝛾 =
1

1 − 𝑥
 

Note: γ is approximately 1 under the ideal solution model. 

Li-Ion equilibrium potential 

Equation of intercalation into a host material M 

𝐿𝑖+ + 𝑒− + 𝑠 ∙ 𝑀 → 𝐿𝑖𝑀𝑠 

Assuming only negligible change in the enthalpic term of the chemical potential under intercalation 
(constant temperature, pressure, volume, and internal energy), one can write the total chemical potential at 
one electrode as: 

𝜇 = 𝜇Θ + 𝐾𝐵𝑇 ∙ ∑ 𝑠𝑖 ∙ ln(𝑎𝑖)

𝑖

+ 𝑛𝑒𝜙 = 𝜇Θ + 𝐾𝐵𝑇𝑙𝑛 (∏ 𝑎𝑖
𝑠𝑖

𝑖

) + 𝑛𝑒𝜙 

Where n, si, ɸ, and µΘ are respectively the number of electrons exchanged, the stoichiometric constant of 
species i in the reaction, the electrode potential, and the chemical potential at standard conditions. 

Under the typical intercalation reaction listed above, we can write 

𝜙 =
𝜇Θ

𝑒
+

𝐾𝐵𝑇

𝑒
𝑙𝑛 (

𝑎𝐿𝑖+ ∙ 𝑎𝑒 ∙ 𝑎𝑀
𝑠

𝑎𝐿𝑖𝑀𝑠

) = 𝜙Θ +
𝐾𝐵𝑇

𝑒
𝑙𝑛 (

𝑎𝐿𝑖+ ∙ 𝑎𝑒 ∙ 𝑎𝑀
𝑠

𝑎𝐿𝑖𝑀𝑠

) 

Note: In the absence of quantum effects, ae is set to 1. 
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Example of LiFePO4 

In the case of Li-Ion batteries where monovalent lithium cations are shuttled, z = 1 

𝐴𝑛𝑜𝑑𝑒: 𝑥 ∙ 𝐿𝑖 → 𝑥 ∙ 𝐿𝑖+ + 𝑥 ∙ 𝑒−, 𝐸Θ = −3.0401 𝑉 𝑣𝑠. 𝑅𝐻𝐸 

𝐶𝑎𝑡ℎ𝑜𝑑𝑒: 𝑥 ∙ 𝐿𝑖+ + 𝑥𝑒− + 𝐹𝑒𝑂4 → {𝑥𝐿𝑖 + 𝐹𝑒𝑂4}, 𝐸Θ = ~0.4 𝑉 𝑣𝑠. 𝑅𝐻𝐸 

𝑉𝑐𝑒𝑙𝑙 = 𝜙𝑐 − 𝜙𝑐 = (0.45 +
𝐾𝑇

𝑥𝑒
ln (

𝑎𝐿𝑖+
𝑥 ∙ 𝑎𝐹𝑒𝑂4

𝑎𝐿𝑖
𝑥 ∙ 𝑎𝐹𝑒𝑂4

) − (−3.0401 +
𝐾𝑇

𝑥𝑒
ln (

𝑎𝐿𝑖+
+

𝑎𝐿𝑖
𝑥 ))) 

Simplification assumptions: standard conditions at the anode and the activity of Li cations in solution and 
the host FePO4 is 1. 

𝑉𝑐𝑒𝑙𝑙 = 𝜙𝑐 − 𝜙𝑎 = (0.45 −
𝐾𝑇

𝑥𝑒
ln(𝑎𝐿𝑖 𝑖𝑛 𝐹𝑒𝑂4

𝑥 ) − (−3.0401 +
𝐾𝑇

𝑥𝑒
ln(1))) = 3.44 −

𝐾𝑇

𝑒
ln(𝑎𝐿𝑖 𝑖𝑛 𝐹𝑒𝑃𝑂4) 

Under the ideal solution model, 

𝑎𝐿𝑖 =
𝑥

1 − 𝑥
⇒ 𝑉𝑐𝑒𝑙𝑙 = 3.44 − 26 ∙ 10−3 ln (

𝑥

1 − 𝑥
) 

Note: 𝐾𝑇

𝑒
~26 𝑚𝑉 𝑎𝑡 25𝑜𝐶 

 

Figure 1: Anticipated profile of LiFePO4 electrode potential versus state of discharge using the regular 
solution model. 

Capacitance of Li-Ion batteries under the ideal solution model 

As derived previously, 

𝜙𝑐
𝑒𝑞

=  𝜙Θ −
𝐾𝑇

𝑒
𝑙𝑛 (

𝑥

1 − 𝑥
) 

Solving for x in tche above expression, we arrive to: 
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𝑥 =
1

2
+ tanh [

𝑒(𝜙Θ − 𝜙𝑐
𝑒𝑞

)

2𝐾𝐵𝑇
] 

The amount of charge Q passed in coulomb can therefore be written as function of state of discharge x 

𝑄 = 𝑒𝐶𝑚𝑎𝑥 ∙ 𝑥 = 𝑒𝐶𝑚𝑎𝑥 ∙ {
1

2
+ tanh [

𝑒(𝜙Θ − 𝜙𝑐
𝑒𝑞

)

2𝐾𝐵𝑇
]} 

The faradaic capacitance, assuming that the electrode reactions are fast such that a state of (quasi) is 
maintained with respect to the applied potential: 

𝐶𝐹 = −
𝜕𝑄

𝜕𝑉
=

𝜕𝑄

𝜕𝜙𝑐
𝑒𝑞 =

𝑒2𝐶𝑚𝑎𝑥

2𝐾𝐵𝑇
sech2 (

𝑒(𝜙Θ − 𝜙𝑐
𝑒𝑞

)

2𝐾𝐵𝑇
) 

Under cyclic voltammetry, V(t) = ±r.t, and the quasi-equilibrium assumption 

𝑄 = 𝑒𝐶𝑚𝑎𝑥 ∙ {
1

2
+ tanh [

𝑒(𝜙Θ−𝑟∙𝑡)

2𝐾𝐵𝑇
]} ⇒ 𝐼(𝑡) =

𝜕𝑄

𝜕𝑡
=

𝑒2𝐶𝑚𝑎𝑥

2𝐾𝐵𝑇
𝑟 sech2 (

𝑒(𝜙Θ−𝑟∙𝑡)

2𝐾𝐵𝑇
)  

𝐼(𝑡) =
𝑒2𝐶𝑚𝑎𝑥

2𝐾𝐵𝑇
𝑟 sech2 (

𝑒(𝜙Θ − 𝑉)

2𝐾𝐵𝑇
) 

Let’s plot this current at room temperature and setting constant parameters to 1 for visualization purposes 

𝐼(𝑡) = sech2(19 ∙ (3.44 − 𝑉))  

 

Figure 2: Predicted cyclic voltammetry profile of Li-Ion battery electrodes under the ideal solution model. 

 

Published experimental results: Figures taken from Matsui et al. J. Power Sources 2010, 195, 6879–6883 
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Figure 3: (left) Open-circuit voltage curves of LiFePO4 particles: open and solid circles denote the measured 
values during the discharging and charging process, respectively. (right): Cyclic voltammograms under 
various sweeping rates from 0.01mVs−1 to 1.0 mVs−1 for LiFePO4 particles.  Caption taken from paper. 

From Figure 3 (right) cyclic voltammogram, we can determine (from the mid-peak potential) that the 
reversible cell potential using LiFePO4 as cathode is ~3.45 V vs. lithium. Comparing the experimental 
voltammogram in Figure 3 (right) to the predicted voltammogram from the ideal solution model, one can 
observe that experimentally a shift is observed between the forward wave compared to the backward wave. 
This is a consequence of transient non-equilibrium processes (transport for example) which are ignore in 
the model. The figure on the left shows the open circuit voltage of a Li||LiFePO4 cell as a function of state 
of depth of discharge (bottom horizontal axis, open circle symbols). The initial drop, slow decay, and final 
drop features of the OCV correspond somewhat to the general profile predicted under the ideal solution 
model shown in Figure 1. However, it is obvious that while the ideal solution model predicts in Figure 1 a 
continuous decay in the OCV as a function of depth of discharge (DOD), experimental results shown in 
Figure 3 (left) clearly present a plateau region. Therefore, a different model for the intercalation process is 
desirable. 

Regular solution model 

We recall that derivation of the entropic term of the chemical potential shown above relied on the 
assumption of ideal lattice gas. In reality, intercalating ions interact due to quantum effects, site exclusion, 
and crowding (especially at high concentrations of inserted cations where the “dilute solution” assumptions 
no longer reasonably holds). These interactions result in additional energy added to the ideal dilute solution 
chemical potential. These additional terms can be expressed as follows: 

𝑔(𝑥) = 𝐾𝐵𝑇[𝑥𝑙𝑛𝑥 + (1 − 𝑥)ln (1 − 𝑥)] + ℎ𝑜𝑥(1 − 𝑥) + 𝜇0 ∙ 𝑥 

ℎ𝑜𝑥(1 − 𝑥): 𝑝𝑎𝑖𝑟 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑒𝑛𝑒𝑟𝑔𝑦 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑎𝑛𝑑 ℎ𝑜𝑙𝑒𝑠 

Note: h0 is positive when attraction exists between intercalated particles (to increase the system energy) and 
negative when repulsion exists between particles (to decrease the systems free energy). µ0 reflects the 
system internal energy. 

Under this model then, 
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𝜇 = 𝐾𝐵𝑇𝑙𝑛 (
𝑥

1 − 𝑥
) + ℎ0(1 − 2𝑥) + 𝜇0 

𝜙𝑒𝑞 = 𝜙Θ −
𝐾𝐵𝑇

𝑒
𝑙𝑛 (

𝑥

1 − 𝑥
) −

ℎ0

𝑒
(1 − 2𝑥) 

 

On the one hand, at high temperatures, the configuration entropy term is large enough to dominate the free 
energy surface resulting in the ideal solution model being a good approximation to the intercalation process.  

At reasonably low temperatures (say room temperature), non-ideal interactions are significant and result in 
interesting features in the free energy profile as a function of state of discharge x.  

  

Figure 4: (left) Free energy as a function of state of discharge x and interaction enthalpy factor at room 
temperature with µ0 = 0. (right) Cell equilibrium potential under regular solution model. A color 
correspondence is maintained between the left and right graphs. 

Four cases of the free energy surface are observed in Figure 4. 

 At h0 equal zero (red curves) corresponding to the absence of pair interactions, one minimum is 
observed on the free energy versus state of charge signifying that one phase at x=1/2 is stable. This 
is the case of the ideal solution model and a similar voltage profile to the one above is retrieved. 

 At h0 equal 0.05 (dark blue curves), a flat “minimum” region appears on the free energy surface 
and indicates that most phases (x ~ 0.2 to 0.8) are reasonably stable and can coexist during 
discharge. This is a critical value of the pair interaction enthalpy. Because most phases (x) are 
stable, a flat plateau is observed for the voltage profile. 

 At h0 equal 0.07 (navy blue curves), two minima appear and indicates 2 stable phases. The voltage 
profile has an inflection point. In reality, a mixture of the two stable phases will be observed 
resulting in the system following a common tangent joining the two energy minima. This in turn 
will result in plateau profile for the electrode potential away from the filling extrema. 

 At even greater values of h0 (green curves), attraction between intercalated particles is so large that 
no stable homogeneous phase can exist in the system. The phase is highly susceptible to 
perturbations. The voltage profile first decays at the low ends of filling. It then rises as high 
attraction between particles causes inhomogeneous filling leaving empty areas in the host materials 
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favorable to filling. Finally at very high average filling, the cell voltage decays due to complete 
occupancy of all available sites.   

Faradaic Capacitance in Li-Ion batteries under regular solution model 

𝑄 = 𝑒𝐶𝑚𝑎𝑥 ∙ 𝑥 𝑎𝑛𝑑 𝐼(𝑡) =
𝜕𝑄

𝜕𝑡
= 𝑟 ∙

𝜕𝑄

𝜕𝑉
 

For the purpose of visualization, let’s set eCmax = 1 and r = 1 and solve numerically 

  

  

Figure 5: Current vs. potential under sweep voltammetry using the regular solution model for key values of 
the interaction enthalpy. A color correspondence is maintained between the capacitance curves and the free 
energy and potential curves in Figure 4. 

Once again, four cases of the free energy surface are observed in Figure 5 corresponding to each situations 
on the free energy surfaces. 

 At h0 equal zero, the capacitance curve for the ideal solution model is recovered by the regular 
solution model.  

 A h0 equal 0.05, a most of the current is delivered catastrophically close to the equilibrium potential 
due to the stability of most phases (in terms of x). 
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 For the two phase solution at h0 equal 0.07, within the miscibility gap, the capacitance behave much 
like an electrostatic capacitor. 

Further information and nomenclatures for phase separating 

iiiiioioi  

 

Figuref f 
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