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1 General Theory of First Passage Processes 

1.1 Defining the Problem 

We continue our discussion of first passage processes, noting that we are interested in systems that 
will produce probability distributions satisfying the Fokker-Planck Equation (sometimes called the 
Drift-Diffusion Equation). At present, we consider only drifts caused by conservative force fields. 
Recall from previous lectures that the Fokker-Planck Equation is a partial differential equation, 
which can be expressed using an operator L. 

∂P 
∂t 

= LP = D 
∂2P 
∂x2 − 

∂ 
∂x

(vP ) 

Here, P (x, t) is the probability distribution function (PDF) for our stochastic process of interest. 
We want to find f(t), the PDF for the first passage time starting from x = x0 at t = 0. More 
generally, this can represent the PDF for reaching the a point x in the target set ST starting from 
the initial set S0 at t = 0. This process is illustrated schematically in Figure 1. 

Figure 1: Schematic of a random walk starting in S0 reaching the target set ST 

To obtain f(t), we first solve the Fokker-Planck equation with initial conditions 

P (x, 0) = δ(x − x1) = Po(x) 
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and with “absorbing” boundary condition 

P = 0 for x ∈ ST 

which eliminates all trajectories that have reached the target set. This ensures that we only count 
first passages. 

Next, we note that the survival probability S(t) is the probability that random walkers have 
not yet reached the target set ST . Formally, we define S(t) as  

S(t) = P (x, t)dx  ∞ 

S(t) = f(τ ')dτ ' 

τ 

which provides us the convenient relationship 

f(τ ) = −S'(τ ) 

This means that if we can obtain S(t), we have f(t) as well, and we can calculate quantities related 
to f(t), for instance the moments of f(t). Here, we also note the following relationships for the first 
passage time PDF f(t):   

∂P 
f(t) = − dx = − LP dx 

∂t 

1.2 Calculating Moments of the First Passage Time 

But perhaps we are only interested in the moments of the first passage time, rather than the PDF. 
The n-th moment is defined as  ∞  ∞ 

(τn) = tnf(t)dt = − tn ∂P 
dxdt 

∂t 
0 0 ∞    

∂n(τ n) = − t P (x, t)dx dt 
∂t

0 

1.3 Mean First Passage Time 

To make this all more tangible, we consider the specific case of the mean first passage time (the first 
moment of f(t)). Calculation of the variance (second moment) is left for Problem Set 2. Letting 
n = 1 in the preceding formula, we see that the mean first passage time is given by 

∞    
∂(τ ) = − t P (x, t)dx dt 
∂t

0 

We evaluate the outer integral by parts, obtaining    ∞  ∞ 
(τ) = −t P (x, t)dx + P (x, t)dxdt 

0 
0
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Here, we argue that the first term is zero. This amounts to arguing that as t →∞ the probability 
density becomes vanishingly small at any single position x. The t = 0 limit clearly evaluates to 
zero. This leaves 

∞ 

(τ) = P (x, t)dxdt 

0 

Now, we switch the order of integration, obtaining ⎛ ⎞ ∞ 

(τ) = ⎝ P (x, t)dt⎠ dx 

0 

and we define the inner integral as the function g1(x) 

∞ 

g1(x) = P (x, t)dt 

0 

Here, we see that we have reduced the problem of calculating (τ ) to the problem of finding g1(x). 
To find g1(x), we use the following trick: we apply the Fokker-Planck operator, L, to both sides of 
the equation defining g1(x). Assuming we can take L inside the integral, we have 

∞ 

Lg1(x) = LP (x, t)dt 

0 

Recall that 
∂P LP = 
∂t 

Making this substitution, we have 

∞ 
∂P (x, t)Lg1(x) = dt = P (x, t)|∞ = −P (x, 0)0∂t 

0 

Noting our initial condition, we find 
Lg1(x) = −δ(x) 

Now, we can also evaluate Lg1(x) by applying the definition of the operator L. Assuming we have 
∂U(x)a conservative force field, F = − , we have ∂x 

∂2g1 1 ∂ � � 
Lg1(x) = D + U '(x)g1

∂x2 kT ∂x 

which can be rearranged as ⎡ � �⎤ 
U �(x)∂∂ ∂g1 kT 

Lg1(x) = D ⎣ + g1 ⎦ 
∂x ∂x ∂x 

∫ ∫
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∫

∫

∫
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Using an integrating factor, we can further simplify this expression to
 

∂ −U ∂ U 
Lg1(x) = D e kT e kT g1

∂x ∂x 

Now we see that we have obtained the relationship 

∂ −U ∂ U 
D e kT e kT g1 = −δ(x)

∂x ∂x 

Using the Fundamental Theorem of Calculus, we can unravel these successive derivatives to invert 
the expression and obtain g1(x). Doing so, we find ⎡ ⎤ 

xA y
−U(x)/kT e U(y)/kT g1(x) = e ⎣ δ(z)dz⎦ dy

D 
x 0 

Where y and xA are chosen to satisfy the boundary conditions of the problem at hand. Also, note 
1that the integral over “half” of a delta function evaluates to . This expression also corrects the 2 

sign error from lecture. 

Kramers Escape Problem 

Now we come to the problem at hand: escape from a symmetric one-dimensional potential well due 
to a random walk caused by thermal fluctuations. The shape of the well is shown schematically in 
Figure 2 below. 

Figure 2: Schematic of our symmetric potential well 

The relevant boundary condition is 

P (xA, t) = 0 

[ ( ]
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which implies 
g1(xA) = 0 

To solve for the mean first passage time, we need g1(x) for |x| < xA so that we can evaluate the 
integral 

(τ) = g1(x)dx 

Using the expression we obtained for g1(x), we have 

xA xA 

(τ) = 1 
e −U(x)/kT e U(y)/kT dydx

2D 
−xA x 

Noting the symmetry of the well, we can split the domain of the outer integration 

xA xA 

(τ) = 1 
e −U(x)/kT e U(y)/kT dydx 

D 
0 x 

Finally, we can remove dimensions from the problem by normalizing the barrier height, defining 

U
Ũ = 

E 

Which leaves us with 
xA xA 

(τ) = 1 
e −(E/kT )Ũ(x) e(E/kT )Ũ(y)dydx 

D 
0 x 

EWe end here, but note that we will be interested in considering the limit →∞.kT 
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