10.675 LECTURE 20

RICK RAJTER

1. Today

- \Rightarrow Exploring Complex Free Energy Landscapes
- \Rightarrow Course Notes
- \Rightarrow Simple vs Complex Free Energy Landscapeds
- \Rightarrow PS Time Scales, and what they can do.
- \Rightarrow Thermodynamic Integration
- \Rightarrow Blue Moon Ensemble (Constrained Dynamics)
- \Rightarrow Transition Path Sampling
- \Rightarrow Examples

 $K_{AB}, A \to B$

Date: Fall 2004.

RICK RAJTER

$$\begin{split} K_{AB} &= \frac{K_b T}{h} e^{\frac{-G\tau}{K_b T}} \\ \text{ps (picosecond) time scales in CPMD} \\ \text{What size } \Delta G \text{ can be overcome in 1 ps at room T?} \\ K_b T &= 0.6 \text{ Kcal/mole} \\ 10^{12} s^{-1} &= 6x 10^{12} s^{-1} e^{\frac{-\Delta G \ddagger}{K_b T}} \\ \Delta G^{\ddagger} 1.1 \text{ kcal/mole} \\ \text{Can we used information on ps time scales to somehow compute } \Delta G^{\ddagger} \end{split}$$

3. Sampling

For E_{KS} , σ large. Large eV's for ps energies but, for quantities related to free energy, sigma's are an order of magnitude lower. Discretize the curve

and small 1.1 kcal/mole variation in each space/region

4. THERMODYNAMIC INTEGRATION

 $H_1 \rightarrow H_2$ Free energy state function can integrate on non-physical pathway. $H = (1 - \lambda)H_1 + \lambda H_2$ Where H_1 Hamiltonian of state 1, H_2 is the Hamiltonian of state 2. $\lambda \rightarrow 0$ to 1. $\Delta F = F_2 - F_1 = \int_0^1 \left\langle \frac{\delta H}{\delta \lambda} \right\rangle_{\lambda} d\lambda$ And F is obviously the free energy in this case. Even this approach can only compute small variations accurately.

5. Blue Moon Ensemble

Constrained Dynamics Compute rare events \rightarrow Carter et al. Chem Phys Lett. 156 (1989, 472) \rightarrow Sprik and Ciccotti JCP, 109 (1998) 7737 $\frac{dF}{dq} = \left\langle \frac{Z^{-1/2}(-f+kTG)}{Z^{-1/2}} \right\rangle_q$ Z, G \rightarrow Mass weighted matrices f \rightarrow Lagrange multiplier on force constraint If q is a simple distance constraint, $\frac{dF}{dq} = \langle f \rangle_q$

10.675 LECTURE 20

Perform at various q Most useful with ps timescale \Rightarrow BUT... how do you know you've chosen the right q? q can be any constraint.

6. TRANSITION PATH SAMPLING (TPS)

"Throwing enough ropes over mountains in the dark" Idea is to try many paths over the potential energy surface. $A \rightarrow B$ in many different ways. Transition path ensemble. Ensemble of all paths of temp, pressure, etc of interest that go from A to B in time τ $Z_{AB}(\tau)$ is the partition function $\frac{Z_{AB}(\tau)}{Z_A} = K_b T$

7. Comitter Probability Distribution

One of the tools of TPS

Allows us to test q

1) Choose a point within the trans state ensemble

2) Sample from Maxwell-Boltzmann distribution n, \vec{v} where n is # of trajectories

3) Propagate system forward in time

4) Compute $P_b \rightarrow$ the probability that the system goes to B