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Materials for today

Mackay's short chapters on renewables: chapters 4,6,8,10,16,18,B,
and D from withouthotair.com

U.S. Department of Energy. Computing Americas Offshore Wind
Energy Potential, September 2016. URL.

U.S. Department of Energy. Simple Levelized Cost of Energy (LCOE)
Calculator Documentation — Energy Analysis — NREL. URL.

@ lLazard. Lazards Levelized Cost of Energy Analysis, Version 15.0.
October 2021. URL.

William H. Schlesinger. Are wood pellets a green fuel? Science,
359(6382):13281329, March 2018. ISSN 0036-8075, 1095-9203. doi.
URL.
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https://www.withouthotair.com/
https://www.energy.gov/eere/articles/computing-america-s-offshore-wind-energy-potential
https://www.nrel.gov/analysis/tech-lcoe-documentation.html
https://www.lazard.com/media/451881/lazards-levelized-cost-of-energy-version-150-vf.pdf
10.1126/science.aat2305

Williams et al 2021 decarbonization pathways
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Figure courtesy of John Wiley & Sons. License: CC BY.
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https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020AV000284

Your renewable toolbox

Mackay, sustainable energy:

In the right-hand sustainable-production
stack, our main categories will be:

e wind
e solar
- photovoltaics, thermal, biomass
o hydroelectric
* wave
o tide
o geothermal

e nuclear? (with a question-mark, be-
cause it's not clear whether nuclear
power counts as “sustainable”)

Courtesy of David MacKay.
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Mackay, sustainable energy:

In the right-hand sustainable-production
stack, our main categories will be:

e wind
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o hydroelectric
* wave
o tide
e geothermal

e nuclear? (with a question-mark, be-
cause it'’s not clear whether nuclear
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More:

@ renewables: derived from

natural processes, that are
regenerative over short
periods of time, cannot be
depleted

clean, net-zero, or
carbon-free?

energy efficiency:
technologies, products, and
services that reduce the
energy required for processes
or tasks
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Your renewable toolbox

Key limitations:
© total potential
@ intermittency
© land use / take

Wind:

http://hint.fm/wind/
http://earth.nullschool.net/
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Your renewable toolbox

Deploying these at scale requires building a new energy system:

Building blocks:

@ solar
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Your renewable toolbox

Deploying these at scale requires building a new energy system:
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Your renewable toolbox

Deploying these at scale requires building a new energy system:
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Agenda for the next few classes

@ wind basics: capacity factors
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Agenda for the next few classes

@ wind basics: capacity factors
@ solar basics: adoption costs, learning curves, siting issues

@ storage and geothermal: developing new niches

David Hsu (MIT) October 25, 2022

7/36



Renewable energy potential — what is it?

Potential amount of this renewable resource that can be generated.

International Renewable Energy Agency (IRENA)
e founded 2009
@ specifically focused on renewables
@ http://www.irena.org/potential_studies/

@ over 10,000 studies on five major categories

David Hsu (MIT) October 25, 2022
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http://www.irena.org/potential_studies/

Our World in Data, updated 2021

The price of electricity from new power plant

Blectricity prices are expressed in levefized costs of energy’ (LOOE

LCOE captures the cost of buikiing the power plant itself as well as the
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Figure by Max Roser, courtesy of Our World in Data. License: CC BY.
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Figure by Max Roser, courtesy of Our World in Data. License: CC BY.
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https://ourworldindata.org/cheap-renewables-growth

Wind Il in Mackay

Courtesy of David MacKay.
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Wind Il in Mackay
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DOE Land-Based Wind Market Report 2022
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Figure 1. Regional b dari laid on a map of average annual wind speed at 100 meters

Public domain content courtesy of US Department of Energy.
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https://www.energy.gov/eere/wind/articles/land-based-wind-market-report-2022-edition

DOE Land-Based Wind Market Report 2022
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DOE Land-Based Wind Market Report 2022
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Figure 3. Relative contribution of generation types and storage to U.S. annual capacity additions

Public domain content courtesy of US Department of Energy.
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DOE Land-Based Wind Market Report 2022

Percent of Capacity Additions: 2012-2021
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Figure 4. Generation and storage capacity additions by region over last ten years

Public domain content courtesy of US Department of Energy.
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https://www.energy.gov/eere/wind/articles/land-based-wind-market-report-2022-edition
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Public domain image courtesy of NREL / US Department of Energy.
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https://www.nrel.gov/gis/wind-resource-maps.html

. . . Public domain image courtesy of Josh Bauer, NREL.
Floating wind turbines

Joshua Bauer, NREL
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https://www.nrel.gov/news/program/2020/nrel-floats-new-offshore-wind-cost-optimization-tool.html
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DOE Offshore Wind Market Report 2022
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Public domain content courtesy of US Department of Energy.
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https://www.energy.gov/eere/wind/articles/offshore-wind-market-report-2022-edition

DOE Offshore Wind Market Report 2022
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Figure ES-1. Locations of U.S. offshore wind pipeline activity and Call Areas as of May 31, 2022. Map created
by NREL

Public domain content courtesy of US Department of Energy.
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https://www.energy.gov/eere/wind/articles/offshore-wind-market-report-2022-edition

DOE Offshore Wind Market Report 2022
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Public domain content courtesy of US Department of Energy.
David Hsu (MIT)


https://www.energy.gov/eere/wind/articles/offshore-wind-market-report-2022-edition

DOE Offshore Wind Market Report 2022
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https://www.energy.gov/eere/wind/articles/offshore-wind-market-report-2022-edition

How big are wind turbine blades, really?

How the Haliade-X compares
Empire State
Building
1,454 ft

1 Eiffel

B Tower

:1 1,063 ft New GE

| Haliade-X

853 ft
v Tallest Block Island
onshore offshore wind
Average US turbine project
| onshore 574ft 590 ft
Statue of ‘ T USturbine
Liberty 466 ft / \
305 ft :
-
f !

a |
& r I
7_ l L & LY
[ ] ' ok X

OFFSHORE

Source: GE, Vox research
© General Electric / Vox. All rights reserved. This content is excluded from our Creative

Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.
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https://ocw.mit.edu/help/faq-fair-use/

HEIGHT

TOTAL HEIGHT OF THE HALIADE-X

853./260..

equivalent to 3X the height
ofthe Flat Iron Building

/ DIAMETER

OF THE ROTOR

/ 722./220.

L equivalent to Golden Gate Bridge
tower height above the water

/ 9 \) SURFACE

OF THE BLADE SWEEP

410,000 sqft
38,000 .

equivalentto 7 American football fields

HALIADE-X 12 MW

GE Renewobl 8y is developing Haliade-X 12 MW,
the biggest offsh ind turbine in the world, with
220-meter rotor, 107-meter blade, leading capacity
factor (63%), and digital capabilities, that will help
our customers find success in an increasingly
competitive environment

ONE HALIADE-X 12 MW CAN GENERATE

67 GWh annually, which

is 45% more annual energy production
(AEP) than most powerful machines on
the market today, and twice as much as
the Haliade 150-6MW

THE HALIADE-X 12 MW WILL GENERATE
ENOUGH CLEAN POWER FORUPTO

16,000 .......

households per turbine, and up to
1 MILLION European households in

a 750 MW configuration windfarm @

© General Electric. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.
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https://ocw.mit.edu/help/faq-fair-use/
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Hallade-X
67 GWh g v
world, with 220-meter rotor, 107-meter
63% ity fact = » ty factor (63%), >
bilities, t
38,000 wept a v
Wind Class IEC: IB

double the energy
as previous GE Haliade model
it ) 1 45%

more energy 1!

gh cle

to 16,000

» 1 million

Eiffel Tower Hallade-X 12 MW  Chrysler
Building

© General Electric. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.
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Really* fun wind stuff to look at

GE Haliade-X, 12 MW turbine

Vox article on wind turbine blades, 5/20/19

DOE segmented blades

Boeing wing test

Columbia Energy Exchange podcast on offshore wind
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https://www.ge.com/renewableenergy/wind-energy/offshore-wind/haliade-x-offshore-turbine
https://www.vox.com/energy-and-environment/2018/3/8/17084158/wind-turbine-power-energy-blades
https://www.energy.gov/articles/enormous-blades-offshore-energy
https://youtu.be/Ai2HmvAXcU0?t=135
https://podcasts.apple.com/us/podcast/outlook-for-u-s-offshore-wind-energy/id1081481629?i=1000449130173

Intermittency / capacity factor

Capacity factor: ratio of actual power produced / maximum possible
power over a period of time.

@ unit-less (%)
@ empirically determined in real life operation

@ changes seasonally
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https://www.eia.gov/electricity/monthly/epm_table_grapher.php?t=table_6_07_a
https://www.eia.gov/electricity/monthly/epm_table_grapher.php?t=table_6_07_b

Intermittency / capacity factor

Capacity factor: ratio of actual power produced / maximum possible
power over a period of time.

@ unit-less (%)
@ empirically determined in real life operation

@ changes seasonally

Nameplate generation capacity: determined by manufacturer

coal-fired power plant

natural gas turbine
200 W solar panel
@ 12 MW wind turbine

EIA Electric Power Monthly: Tables 6.07A for fossil, 6.07B for non-fossil
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https://www.eia.gov/electricity/monthly/epm_table_grapher.php?t=table_6_07_a
https://www.eia.gov/electricity/monthly/epm_table_grapher.php?t=table_6_07_b

Capacity Factor Changes, 2013-2018
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Levelized Cost of Energy (LCOE)

sLCOE = fixed costs + fuel costs + variable operations & maintenace
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Levelized Cost of Energy (LCOE)

sLCOE = fixed costs + fuel costs + variable operations & maintenace

JCOE — capital cost x recovery factor + fixed O&M

8760 x capacity factor
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JCOE — capital cost x recovery factor + fixed O&M
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Levelized Cost of Energy (LCOE)

sLCOE = fixed costs + fuel costs + variable operations & maintenace

capital cost X recovery factor + fixed O&M

sLCOE =
8760 x capacity factor
+ fuel cost x heat rate
4 variable O&M costs
David Hsu (MIT) October 25, 2022
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Wikipedia: “Levelized cost of energy”

The levelized cost of electricity (LCOE) is given by:

sum of costs over lifetime
sum of electrical energy produced over lifetime

LCOE =

Iy : investment expenditures in the year t

M, : operations and maintenance expenditures in the year t
Fy : fuel expenditures in the year t

E; : electrical energy generated in the year t

r . discount rate

n : expected lifetime of system or power station

Note: Some caution must be taken when using formulas for
the levelized cost, as they often embody unseen
assumptions, neglect effects like taxes, and may be specified
in real or nominal levelized cost. For example, other versions
of the above formula do not discount the electricity

stream [¢tation needed)

© Individual editors at Wikipedia. License CC BY-SA. This content is excluded from our
Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.
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https://en.wikipedia.org/wiki/Levelized_cost_of_electricity
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© Lazard. All rights reserved. This content is excluded from our Creative
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https://www.lazard.com/perspective/levelized-cost-of-energy-levelized-cost-of-storage-and-levelized-cost-of-hydrogen/
https://ocw.mit.edu/help/faq-fair-use/

Levelized Cost of Energy Comparison—Sensitivity to U.S. Federal Tax Subsidies®

The Investment Tax Credit (“ITC") and Production Tax Credit (“PTC") remain important p of the levelized cost of r energy
generation technologies
Soka PV-Rooflop Residential s [ :::
$135 5203
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Lazard's Levelized Cost of Energy Analysis, v15, 2021
© Lazard. All rights reserved. This content is excluded from our Creative

Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.
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https://www.lazard.com/perspective/levelized-cost-of-energy-levelized-cost-of-storage-and-levelized-cost-of-hydrogen/
https://ocw.mit.edu/help/faq-fair-use/

Levelized Cost of Energy Comparison—Renewable Energy versus Marginal Cost of Selected Existing Conventional Generation

Certain energy ies have an LCOE that is competitive with the marginal cost of existing conventional generation

0

Levelized Cost of New-Buikd Wind and Solar H Margnal Ce

cted Existing
A Convent: "
&

necation

Lazard's Levelized Cost of Energy Analysis, v15, 2021

© Lazard. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.
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