11.205 – Intro to Spatial Analysis – Fall 2019

Week 3 - Quantitative Mapping: U.S. Census Data, Geography, and Other Data Sources

[OCW Users: The following document refers to the course website (Stellar) which is not available to users outside MIT.]

ArcMap Exercise

Week 3 Objectives – Part 1 – Social Explorer and Using Excel

I. Acquire American Community Survey Data from Social Explorer

- II. Use Excel with GIS
- III. Make a Map with downloaded Data
- IV. Make a Chart using GIS data in Excel
- V. Create a Layout with Multiple Maps

Lab Data

Download the class files from Stellar and load them onto your external hard drive.

The unzipped file consists of the following folders:

- 1. DOCUMENTS: This folder includes Word documents for this week's in-class exercise(s).
- 2. DATA: This folder contains all the data needed for this week's in-class exercise.
- 3. PROBLEM SET 1: This folder contains all of the instructions, data required to complete the take home problem set, and three reference materials:
 - a. Working with Excel: Why can't I change my 'Geo_FIPS' field from numeric to text?!
 - b. How to Make a Nice Bar Chart
 - c. Writing Effective Policy Memos

ACQUIRING AND MAPPING U.S. CENSUS BUREAU DATA

This week in lecture, we discussed various sources of spatial data and how they can and should be used in a GIS setting. In lab today, we are going to look at the spatial patterns of educational attainment using American Community Survey data for 2012-2016. You will see similarities with the dataset we worked with in Week 1, but instead we are going to work at the **Tract level and not the Block Group level** (remember the various Census Geographies from lecture). The Charles River Watershed Association is seeking to build an educational center, and would like information on the various education levels in the Watershed. The most recent American Community Survey (2012-2016) files contain this data, so we are going to acquire tract level data for three counties in the Boston metro area, then create a map that focuses only on the census tracts that are contained in the Charles River Watershed.

OBJECTIVE 1: ACQUIRE ACS DATA FROM SOCIAL EXPLORER

As mentioned in class, there are many ways to download American Community Survey data. The MIT Libraries has a subscription to a tool called Social Explorer that contains much Census and ACS data. We

are going to use this for the exercise, because it is the easiest way to download the data we need in spreadsheet format. If you are on the MIT campus, Social Explorer should automatically recognize the MIT subscription. Otherwise, if you are working from home, for example, you will need to connect to the MIT network first via Cisco's AnyConnect VPN software.

1. Begin our Data Mining on Social Explorer

Navigate to <u>https://www.socialexplorer.com/explore-tables</u>. The website looks like the following image. A. Click on 'Tables' on the top bar of the page.

Social Explorer Tables	Professional plan provided by Massachusetts Institute of Technology (MIT)	Create Account Login
Explore Maps	U.S. Decennial Census	~
Data Dictionary and documentation	American Community Surveys (5-Year Estimates) NEW	~
Website • Help • Blog • Privacy Demographic Profiles • Feedback	American Community Surveys (3-Year Estimates)	~
	American Community Surveys (1-Year Estimates) NEW	~
	American Community Surveys (Supplemental Estimates) NEW	~

After Social Explorer loads, you will see a list of the various datasets available on Social Explorer. There are two ways to access data, either by table, or by selecting on a map. We are going to use the Table method, where we can obtain data on the level of various census geographies.

B. Click on American Community Survey (5-Year Estimates).

Social Explorer Tables	Professional plan provided by Massachusetts Institute of Technology (MIT)	Create Account Login
 Explore Maps Tables 	U.S. Decennial Census	×
Data Dictionary and documentation	American Community Surveys (5-Year Estimates)	~
Website · Help · Blog · Privacy Demographic Profiles · Feedback	American Community Surveys (3-Year Estimates)	~
	American Community Surveys (1-Year Estimates) NEW	~
	American Community Surveys (Supplemental Estimates)	~

C. We will be using the most recent, "2013-2017 (5-year Estimates)." Select the corresponding "Begin Report" link.

American Community Surveys (5-Year Estimates)

~

ACS 5-Year Estimates (available down to the Census Block Group geography) data plus Social Explorer tables which include easy reports with age, sex, race, Hispanic origin, household relationship, place of birth, education, employment status, income, tenure, cost and value of housing, year structure built and other data.

American Community Survey (ACS) 20132017 (5-Year Estimates)	NE Begin Report	More info
American Community Survey (ACS) 20122016 (5-Year Estimates)	Begin Report	More info
American Community Survey (ACS) 20112015 (5-Year Estimates)	Begin Report	More info

2. Select the Desired Geography

For this exercise, we are going to work at the Census Tract level. When you begin your report, you are prompted to list the geographies for which you would like to download data. We are going to select Census Tracts for Middlesex, Suffolk, and Norfolk counties. The geography listing operates in a drill-down type manner. First, set the geographic type to be Census Tract. Second, select a state, and third, select each county. Fill out your selection to match the following.

010	Nation
067	Subminor Civil Division (In Puerto Rico Only)
070	Place/Remainder
140	Census Tract
150	Block Group
160	Place
155	County
170	Consolidated City
172	Place Within Consolidated City
280	American Indian Area/Alaska Native Area/Hawaiian Home Land
283	American Indian Area/Alaska Native Area (Reservation or Statistical Entity Only)

Select a Geographic Type: State -> County -> Census Tract (Important: make sure you select the Census Tracts at level 140, not level 080. This will simplify the unique ID.)

Select a State: Massachusetts

Select a County: We are working with three counties (Middlesex, Suffolk, and Norfolk). You are

Select Census Tract

Sample Selection pictured for Norfolk County. Do this for all three counties: Norfolk, Middlesex, Suffolk

going to have to select each county one by one in order to get our three counties. Every time you select a county, then select "All census tracts in" that county. Add it to the Current Geography Selections by double clicking on it or by clicking on the "Add" button. Your final window should look like the screenshot shown below.

140 Census Tract	
Select a State:	
Massachusetts	
Select a County:	
Norfolk County, Massachusetts	
Select one or more geographic areas and click 'add':	
All census tracts All census tracts in Massachusetts All census tracts in Norfolk County, Massachusetts	·
====== Individual Census Tracts ======= Census Tract 4001, Norfolk County, Massachusetts	
Census Tract 4002, Norfolk County, Massachusetts Census Tract 4003, Norfolk County, Massachusetts Census Tract 4004, Norfolk County, Massachusetts	•
Add 🔻 📉 Remove 🔺	
Current Geography Selections:	
====== Census Tract - 140 =======	
All census tracts in Suffolk County, Massachusetts All census tracts in Middlesex County, Massachusetts All census tracts in Norfolk County, Massachusetts)
	Proceed to Tables ►

Click "Proceed to Tables" to begin the selection of datasets available for download.

In the datasets window, select the table we are seeking on **Educational Attainment For Population 25** Years And Over. It should be table A12001 in the Social Explorer Tables: ACS 2017 (5-year Estimates). Note all of the data layers, datasets, and tables available in the American Community Survey. There is a huge amount of information collected that can be analyzed and mapped! Select your dataset by scrolling through the List Tables, or click on Search by Keyword and enter some keywords for the variables you are looking for (for example, search Education to find Educational Attainment). Your selection window should look like the following. Click on 'add' and then 'show results' once you have selected your datasets. Make sure you highlight the data table in the window before you click on "Show Results" button.

	Premade Reports	
elect a dataset:		
Social Explorer Tables: ACS 2017 (5-Year Estimates)	*	
select one or more tables and click 'add':		
A 12002D: Trightest Educational Attainment for Fernale F A10021. Housing Units by Educational Attainment of Ho A12005B. Educational Attainment of Householder (Ren	upuration 20 rears and over suseholder ter-Occupied Housing Units)	•
A12004. School Enrollment for the Population 3 Years a A12006. Level of School by Type of School for Enrolled	ind Over in School Population 3 Years and Over	
A12003. School Dropout Rate for Population 16 to 19 Y A12003A. School Dropout Rate for Male Population 16	ears to 19 Years	
A12005b. School Dropout Rate for Female Population A17002. Employment Status for Total Population 16 Yea	ars and Over	
A17002A Employment Status for Male Population 16 Y	ears and Over 3 Years and Over	
A17002B. Employment Status for Female Population 16		
A17002B. Employment Status for Female Population 16 A17001. Labor Force for Population 16 Years and Over A17005. Uperployment Bate for Civilian Population in J	abor Force 16 Years and Over	

Add V Remove A					
Current Table Selections:					
======================================	^	Show results	٠		

Click the **'Show results'** button. The next page should show you a report view of the data we selected.

												~
Statistics	Census 300 Middl Cou Massact	s Tract D1, lesex inty, husetts	Census 3011 Middl Cou Massad	Tract .01, esex nty, husetts	Census 3011 Middle Cou Massact	s Tract .02, esex nty, husetts	Census 310 Middle Cour Massact	Tract 1, esex tty, nusetts	Census 310 Middi Cou Massac	Tract 2, esex nty, nusetts		
E:A12001. Educational Attainment for Popula	ition 25 Y	fears and	Over									
opulation 25 Years and Over:	2,338		2,787		3,620		3,933		4,195			
ess than High School	196	8.4%	181	6,5%	145	4.0%	773	19.7%	484	11.5%		
High School Graduate (Includes Equivalency)	869	37.2%	802	28.8%	1,094	30.2%	1,021	26.0%	1,996	47.6%		
Some College	604	25.8%	831	29.8%	1,041	28.8%	914	23.2%	921	22.0%		
achelor's Degree	447	19.1%	634	22.8%	860	23.8%	657	16.7%	423	10.1%		
Master's Degree	170	7.3%	311	11.2%	377	10.4%	412	10.5%	333	7.9%		
Professional School Degree	31	1.3%	9	0.3%	31	0.9%	37	0.9%	13	0.3%		
Doctorate Degree	21	0.9%	19	0.7%	72	2.0%	119	3.0%	25	0.6%		
or documentation and detailed source in Sources & Notes ACS 2017 (5-Year Estimates)	Docume	ntation	on a tab Da	le title. A	ull percen	its are tai	ken again	st table i	universe	which is the	first row in each table.	
Noo zon (o-real Estimates)	Voor Eeti	mates)(S	E), ACS	2017 (5-	Year Esti	mates), S	locial Exp	olorer; U	S. Censu	is Bureau		

3. Download the Data

In the Report window, click on the Data Download tab. Here you are presented with a number of different options for downloading the dataset. Put a check next to "Output column labels in the first row", and click to download "Census Tract data (CSV)". This will download a comma-separated variable file that we can open in Microsoft Excel.

Report	Excel Data Download
Report	Excel Data Download
ownload data in CSV for /estern Latin-1 (ISO-885	rmat. CSV stands for Comma Separated Values, and it is a highly portable format that can be read by n i9-1).
Please set options befo	re you download any data or import programs (these options affect both).
Output options:	
TAB delimited file	is (STATA users should use this option to make import more efficient & accurate!)
 Output column lai 	bels in the first row
Output ALL geogram	raphic identifiers
	·
 Output percents (first variable in each table is the base)
Output DBF friend	dly column names
omiliau uata p	y geography type:
Census Tract data (C	(SV)
Summary Level:	140
Geography Nesting:	State-County-Census Tract
Selected:	652
lownload progra	ims to import and label data:
ownoug progra	
SAS	
SAS SPSS	

This will download a file that will be given a temporary name. **Save it to your weekly workspace**. Open up the CSV file in Microsoft Excel. CSV files are readable and editable in Microsoft Excel, but you will need to select 'All Files' from the dropdown menu to see the .csv file.

OBJECTIVE 2: USING EXCEL WITH GIS

1. Clean up the Data/Prepare it for GIS

Open the new .csv file from where you saved it. The first thing we need to do is prepare the file to be read into GIS software without any errors. We can also get rid of fields that we will not be using. There are several fields in this table that we do not need, remove them by selecting them, right clicking on the selection, and deleting them. In our case, most of these fields are empty, making them useless to us. In some circumstances however, there is data in the field, we just will not be using it for our purposes.

We can get rid of many of the fields, as they either contain no data or are filled with redundant data. This will vary based on census variables, but it is much easier to work with a small file.

Delete all columns for fields that are **NOT** listed below by right-clicking on the column, then clicking 'Delete.' The fields we need to KEEP include:

1. FIPS - (Geo_FIPS) - THIS WILL BE OUR PRIMARY KEY

- 2. Name of Area (Geo_NAME)
- 3. Population 25 Years and over (SE_A12001_001)
- 4. Population 25 Years and over: Less Than High School (SE_A12001_002)
- 5. Population 25 Years and over: High School Graduate (includes equivalency) (SE_A12001_003)
- 6. Population 25 Years and over: Some college (SE_A12001_004)
- 7. Population 25 Years and over: Bachelor's degree (SE_A12001_005)
- 8. Population 25 Years and over: Master's degree (SE_A12001_006)
- 9. Population 25 Years and over: Professional school degree (SE_A12001_007)
- 10. Population 25 Years and over: Doctorate degree (SE_A12001_008)

With our spreadsheet now much more lightweight, we must rename fields so that ArcGIS can read them properly. We downloaded the first row in the table to make it easier to figure out what the fields' names are, but GIS will not like the length of the names, or the fact that they contain spaces. Use the second field name where the names are eight characters or less. These names would be fine to use, however, as they are hard to understand, let's make them a little clearer by changing the names of the fields to the ones specified in the following table.

Rename the following fields (by typing the new names in the second row):

Population 25 Years and over - **SE_A12001_001_=> POP_EDU** Population 25 Years and over: Less Than High School - **SE_A12001_002 => LESS_HS** Population 25 Years and over: High School Graduate (includes equivalency) - **SE_A12001_003 => MORE_HS** Population 25 Years and over: Some college - **SE_A12001_004 => SOME_COL** Population 25 Years and over: Bachelor's degree - **SE_A12001_005 => HAS_BA** Population 25 Years and over: Master's degree - **SE_A12001_006 => HAS_MAST** Population 25 Years and over: Professional school degree - **SE_A12001_007 => HAS_PROF** Population 25 Years and over: Doctorate degree - **SE_A12001_008 => HAS_PHD**

IMPORTANT: Delete the row that contains the first heading of the file, the long one with spaces. Right click on the row and select delete. Your cleaned file should look like the following.

Now, this table is in a manageable size and format.

But wait! There are four more things we can do to prepare this file: set the field data types, set up the unique field for joining to GIS, add and calculate any new fields, and properly name the Excel sheet we are working in.

a. Change and Set Field Data Types

In Excel, field data types are called 'formats'. Change the format of the cells to make sure that GIS will read it correctly. Select the columns for each field, right click them, and select 'Format cells.' Change the format to the correct one if it's not correct. Below is a list of the correct field type.

	В	C		D	F
Geo_FIPS	Geo_NAME	POP_EDU	X Cut		MORE_HS
2501730010	0 Census Tract 3001, Middlesex County, Massachusetts		Copy	160.00	
2501730110	1 Census Tract 3011.01, Middlesex County, Massachusetts		Paste Options:	165.00	
2501730110	2 Census Tract 3011.02, Middlesex County, Massachusetts	-	A	122.00	
2501731010	0 Census Tract 3101, Middlesex County, Massachusetts		- -	784.00	
2501731020	0 Census Tract 3102, Middlesex County, Massachusetts		Paste Special	496.00	
2501731030	0 Census Tract 3103, Middlesex County, Massachusetts		Insert	786.00	
2501731040	0 Census Tract 3104, Middlesex County, Massachusetts		Delete	456.00	
2501731050	0 Census Tract 3105, Middlesex County, Massachusetts		Class Contents	266.00	
2501731060	1 Census Tract 3106.01, Middlesex County, Massachusetts		clear contents	611.00	
2501731060	2 Census Tract 3106.02, Middlesex County, Massachusetts		Format Cells	452.00	
2501731070	0 Census Tract 3107, Middlesex County, Massachusetts		Column Width	510.00	
2501731110	0 Census Tract 3111, Middlesex County, Massachusetts		Hide	555.00	
2501731120	0 Census Tract 3112, Middlesex County, Massachusetts		Chaladae	818.00	
2501731130	0 Census Tract 3113, Middlesex County, Massachusetts	J.,	2041.00	589.00	
2501731140	0 Census Tract 3114, Middlesex County, Massachusetts		4074.00	723.00	
2501731150	0 Census Tract 3115, Middlesex County, Massachusetts		1969.00	338.00	
2501731160	0 Census Tract 3116, Middlesex County, Massachusetts		3735.00	510.00	
2501731170	0 Census Tract 3117, Middlesex County, Massachusetts		3011.00	681.00	
2501731180	0 Census Tract 3118, Middlesex County, Massachusetts		2231.00	784.00	
20 2501731180	D Census Tract 3118, Middlesex County, Massachusetts		2231.00	784.00	

Make sure your field types are the same as the below list.

- 1. Geo_FIPS = Text
- 2. Geo_NAME = Text

POP_EDU= Number (no decimals)
 LESS_HS= Number (no decimals)
 MORE_HS= Number (no decimals)
 SOME_COL= Number (no decimals)
 HAS_BA= Number (no decimals)
 HAS_MAST= Number (no decimals)
 HAS_PROF = Number (no decimals)
 HAS_PHD = Number (no decimals)

You can also do this by using the dropdown menu in the Home tab of Excel:

Format Cells					8	x
Number Alignment	Font	Border	Fill	Protection		
Number Alignment <u>Category:</u> <u>General</u> <u>Number</u> Currency Accounting Date Time Percentage Fraction Scientific Text Special Custom	Font Sample Geo_TF Decimal 1 Use 1 Negative 1234 (1234) (1234)	Border	Fill	Protection		*
formatting for monetary	value.	y of numb	ers. Curren	icy and Accounting offer spe	clalized	
				ОК	Can	cel

Pa	ipboard	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Wrap Text Merge & Center -	123 12	General No specific format Number POP_EDU Currency	dition; natting
	A	B	с		POP_EDU Accounting	
1 2	Geo_FIPS 25017300100	Geo_NAME Census Tract 3001, Middlesex County, Massachusetts	POP_EDU		POP_EDU Short Date	
3 4	25017301101 25017301102	Census Tract 3011.01, Middlesex County, Massachusetts Census Tract 3011.02, Middlesex County, Massachusetts			Long Date	
5 6 7	25017310100	Census Tract 3101, Middlesex County, Massachusetts Census Tract 3102, Middlesex County, Massachusetts		0		
8	25017310300	Census Tract 3105, Middlesex County, Massachusetts Census Tract 3104, Middlesex County, Massachusetts		%	Percentage POP_EDU	
10	25017310601	Census Tract 3106.01, Middlesex County, Massachusetts Census Tract 3106.01, Middlesex County, Massachusetts		1/2	Fraction POP_EDU	
12	25017310700	Census Tract 3100.02, Middlesex County, Massachusetts Census Tract 3107, Middlesex County, Massachusetts		10 ²	POP_EDU Text	
14	25017311200	Census Tract 3112, Middlesex County, Massachusetts		ABC	POP_EDU	
16	25017311300	Census Tract 3115, Wildlesex County, Massachusetts Census Tract 3114, Middlesex County, Massachusetts		4	074.00	-

Save your current version as a 'Microsoft Excel 97-2003' Worksheet. Backsave it to xls. Name it Education_ACS2017.xls

IT IS VERY IMPORTANT THAT YOU SAVE AS AN EXCEL FILE.

THE .CSV FILE WILL NOT SAVE THE FORMATTING YOU HAVE DONE AND MIGHT CAUSE PROBLEMS WHEN YOU JOIN.

IMPORTANT: Save as xls file (Excel 97-2003) ... NOT as an xlsx file.

b. Locate the Unique Key to Join to GIS

The Unique Key in our downloaded Social Explorer data is called **GEO_FIPS**. This will be the field we join to our GIS file.

In the GIS shapefile we'll be working with later, you'll notice a **GEOID10** field that contains matching rows. GEOID10 is type Text, so that's why we made sure that the GEO_FIPS field is formatted to be Text data type too. As noted above, make sure you save as an Excel file to preserve the formatting.

c. Use Excel Formulas to Add Fields and Derive Variables

When joining data from Excel to a GIS file, you can normalize and add derived data either in GIS software, or you can calculate numbers in Excel before you perform the join. We will do both today to show the methods and introduce you to Excel formulas. In this exercise, we are going to create two maps of educational data in the Charles River watershed. One of the maps will show the percentage of individuals that possess a Master's Degree by Census Tract, and the other will show individuals that have Less than a High School Education by Census Tract.

We will look at them side by side at the end of the lab exercise. Using a formula in Excel, let's create a new field and calculate the percentage of population age 25 and over that have a Master's Degree for each Census Tract.

1. Click on the column at the end of your Excel sheet to the right of HAS_PHD. In the top row with the other headers and type PERC_MAST in the column header.

Geo_FIPS	Geo_NAME	POP_EDU	LESS_HS	MORE_HS	SOME_COL	HAS_BA	HAS_MAST	HAS_PROF	HAS_ HD	PERC_MAST
25017300100	Census Tract 3001, Middlesex County, Massachusetts	2157	148	699	713	362	196	14	. 23	
25017301101	Census Tract 3011.01, Middlesex County, Massachusetts	2744	172	893	883	570	217	1	. 8	
25017301102	Census Tract 3011.02, Middlesex County, Massachusetts	3381	175	1219	892	781	255	38	21	
25017310100	Census Tract 3101, Middlesex County, Massachusetts	3304	596	526	1034	651	363	50	84	
25017310200	Census Tract 3102, Middlesex County, Massachusetts	4631	646	1662	1436	592	249	0	46	
25017310300	Census Tract 3103 Middlesex County Massachusetts	3952	962	1237	1058	509	178	8	0	

2. In this column, we are going to use what is called an Excel formula. Formulas allow us to fill in spreadsheet cells based on criteria, logical tests, and values from other cells. In simple terms, we wantthis field to hold the percentage of the population age 25 years and older that has a Master's Degree, and we can create this by combining other fields. In this circumstance, we need to take HAS_MAST and divide it by POP_EDU to get the percentage of individuals that possess a Master's Degree.

PERC_MAST = HAS_MAST/POP_EDU

There is a problem with this statement, however. There are a handful of census tracts that have zero population. (POP_EDU = 0) You cannot divide by zero, so we need to tell Excel what to do with these tracts. We can accomplish this using an IF statement. An IF statement will look at each cell we are calculating and if POP_EDU is equal to zero, it will place a zero in the cell instead of throwing an undefined error.

In Excel, an IF statement looks like the following:

=IF(<logical_test> , <value_if_true> , <value_if_false>)

In this circumstance, our <logical test> is POP_EDU=0, our <value if true> should be 0, and our <value if false> is HAS_MAST/POP_EDU. Your IF statement should be the following. Place it in the first row beneath our PERC_MAST header.

=IF(C2=0,0,(H2/C2)*100)

If you wrote your statement properly, you will see the following:

1	A	В	С	D	E	F	G	н	1	J	K
1	Geo_FIPS	Geo_NAME	POP_EDU	LESS_HS	MORE_HS	SOME_COL	HAS_BA	HAS_MAST HA	S_PROF	HAS_PHD	PERC_MAST
2	25017300100	Census Tract 3001, Middlesex County, Massachusetts	2338	196	869	604	447	170	31	21	7.271172
3	25017301101	Census Tract 3011.01, Middlesex County, Massachuset	2787	181	802	831	634	311	9	19	
4	25017301102	Census Tract 3011.02, Middlesex County, Massachuset	3620	145	1094	1041	860	377	31	72	
5	25017310100	Census Tract 3101, Middlesex County, Massachusetts	3933	773	1021	914	657	412	37	119	
6	25017310200	Census Tract 3102, Middlesex County, Massachusetts	4195	484	1996	921	423	333	13	25	
7	25017310300	Census Tract 3103, Middlesex County, Massachusetts	3788	747	1713	841	291	144	0	52	

Double click the little green box in the lower right corner to fill the rest of the field with the correct values for each row.

4. The cells in Excel do not contain values at this point, but rather contain the IF statement we just wrote. to make the calculations permanent, copy and paste values in the newly calculated field. To do this, select all the values in the column, right-click and copy them, then right-click on the selected area and click Paste Values. This will change the value of each cell to be the proper numeric value.

Double-click here to fill the field THAS_PROF HAS_PHD PERC_MAST 31 21 7.2711 9 19 31 72 37 119 3 13 25

52

0

When complete, your Excel file will contain a new field that has the percentage of individuals that possess Masters Degrees called PERC_MAST and will look like the following:

1	A	В	С	D	E	F	G	н	1	J	К
1	Geo_FIPS	Geo_NAME	POP_EDU	LESS_HS	MORE_HS	SOME_COL	HAS_BA	HAS_MAST HAS	S_PROF H	AS_PHD	PERC_MAST
2	25017300100	Census Tract 3001, Middlesex County, Massachusetts	2338	196	869	604	447	170	31	21	7.271172
3	25017301101	Census Tract 3011.01, Middlesex County, Massachuset	2787	181	802	831	634	311	9	19	11.15895
4	25017301102	Census Tract 3011.02, Middlesex County, Massachuset	3620	145	1094	1041	860	377	31	72	10.41436
5	25017310100	Census Tract 3101, Middlesex County, Massachusetts	3933	773	1021	914	657	412	37	119	10.47546
6	25017310200	Census Tract 3102, Middlesex County, Massachusetts	4195	484	1996	921	423	333	13	25	7.938021
7	25017310300	Census Tract 3103, Middlesex County, Massachusetts	3788	747	1713	841	291	144	0	52	3.801478
8	25017310400	Census Tract 3104, Middlesex County, Massachusetts	1866	378	875	433	120	60	0	0	3.215434
9	25017310500	Census Tract 3105, Middlesex County, Massachusetts	1895	295	636	537	254	165	8	0	8.707124
10	25017310601	Census Tract 3106.01, Middlesex County, Massachuset	4452	592	1537	1321	522	436	28	16	9.793351
11	25017310602	Census Tract 3106.02, Middlesex County, Massachuset	3759	542	1308	1008	484	335	28	54	8.911945
12	25017310700	Census Tract 3107, Middlesex County, Massachusetts	2452	485	1058	529	266	96	18	0	3.915171
13	25017311100	Census Tract 3111, Middlesex County, Massachusetts	1661	602	447	366	149	79	0	18	4.756171
14	25017311200	Census Tract 3112, Middlesex County, Massachusetts	2002	729	582	335	247	100	9	0	4.995005

d. Change your Sheet Name

The final step is to change the sheet name in Excel to something that makes sense. When you import an Excel spreadsheet to ArcGIS, you do not import the entire workbook, rather you import individual sheets of data. We only have one sheet in this dataset. Find the name of it at the bottom of the Excel interface. Change the name to **Education_2017**. Save your file.

Educ	cation_2017	1			•
20	43.00	0.00	1.00	1.948346	
19	105.00	20.00	11.00	3.381643	
18	361.00	44.00	43.00	9.423127	
17	336.00	19.00	25.00	16.72474	
16	558.00	45.00	57.00	13.19773	
15	184.00	50.00	20.00	7.101505	
14	100.00	9.00	0.00	4.995005	
13	79.00	0.00	18.00	4.756171	
12	96.00	18.00	0.00	3.9151/1	

For some pointers on table formatting from ESRI, check out the following link. <u>http://desktop.arcgis.com/en/arcmap/10.3/manage-data/tables/formatting-a-table-in-microsoft-excel-for-use-in-arcgis.htm</u>

Now let's make a map! Close Microsoft Excel so that ArcGIS can read our new file.

OBJECTIVE 3: MAKE A MAP FROM AN EXCEL SPREADSHEET

After the Excel file preparation, the spreadsheet is now ready to join to a Census Tract file and be mapped. To complete Objective 3, we are going to make a map. Our final output for this map is going to show Educational Attainment by Census Tract for all tracts that fall within the Lower Charles River Watershed in the metropolitan Boston area.

In the next steps, we will add our data, join the spreadsheet to the geometry file, extract only the tracts in the geometry file that fall within the Lower Charles River Watershed, and symbolize our data.

1. Add Data and Join Tables

1. Open ArcMap and create a new Blank Map. Then add the following files.

- ACS_boston_2019_tracts_final.shp These represent ACS Census Tract boundaries in Norfolk, Suffolk, and Middlesex Counties.
- The sheet "Education_2017" from the Excel file Education_ACS2017.xls This is the Excel file with the educational attainment data that we downloaded from Social Explorer. Add the Education_2017 sheet that contains the data.
- 2. In order to join two tables, the columns we are joining on must be the same data type. For example, we can't join a text column to a number column, so we have to make sure that both are NUMBER columns. We are going to perform our table join based on two fields, Geo_FIPS and GEOID, so we need to ensure that the column data type is the same for both. Check the properties of each column to see this.
- 3. Open the Attribute Tables for both Education_2017_converted.dbf and ACS_boston_2019_tracts_final.shp files. Right click the header of the respective fields (GEOID and Geo_FIPS) to view Properties. If they match, we can skip this...but they don't! Geo_FIPS is numeric (double) and GEOID is a text (string). So, what we need to do is create a new field in the ACS_boston_2019_tracts_final.shp with Double data type, call it a new name (GEOID_NUM) and populate it with the data in GEOID.
- a. To create a new filed in the shapefile, open the attribute table for *ACS_boston_2019_tracts_final.shp*. Click on the **Table Options** button in the upper left corner of the table. Select **Add Field**.

Select Add Field from Table Options

- b. Create a new field, call it **GEOID_NUM**, and give it type **Double**.
- c. Use the Field Calculator to populate our new field. Set the **GEOID_NUM** field to be equal to the **GEOID** field, and click OK. Our field will populate. Close the attribute. We will perform our join next on the Education_2017_converted layer.

Ad	d Field					×
Na	ime:	GEOID_N	NUM]
Ту	pe:	Double			~	
F	Field Proper	ties				
	Precision			0		1
	Scale			0		1
			ОК		Cancel	

Syn Scipt Oryan	n	
ields:	Type:	Functions:
FID Shape STATEFP COUNTYFP TRACTCE GEOID NAME NAMELSAD MTFCC	O Nur O Stri Dai	Abs () Atn () ring Cos () Exp () ate Fix () Int () Log () Sin () Sqr () Tan ()
Show Codeblock		* / & + -
[GEOID]		

4. Using the methods we learned to join tables in the exercises from last week, join the Education_2017_converted data to ACS_boston_2019_tracts_final.shp. (That means you **right click on ACS_boston_2019_tracts_final.shp** to perform the join.) Perform the join on **GEOID_NUM** from the Tracts shapefile, choose the Education_2017_converted table as the table to join to the layer, and base the join on the **Geo_FIPS** field. Click validate join to see if there are any errors. Click OK to complete the join.

NOTE: You can only join fields of the same data type. (i.e. Number to Number, Text to Text). This is a common cause of errors when joining Census data to geometry (i.e. attempting to join a Number field to a Text field). If this does not work, see the previous step once more.

Open the attribute table to see if the join worked. You should see your spreadsheet appended to the shapefile now.

Join D	ata	×
Join le for exa	ts you append additional data to this layer's attribute table so you can, ample, symbolize the layer's features using this data.	
What	do you want to join to this layer?	
Join a	ttributes from a table	\sim
1.	Choose the field in this layer that the join will be based on:	
	GEOID_NUM ~	
2.	Choose the table to join to this layer, or load the table from disk:	
	🖽 Education_2017_converted 🔽 🖆	
	∽ Show the attribute tables of layers in this list	
3.	Choose the field in the table to base the join on:	
	Coo ETDS	
	Geo_FIPS ×	
-J	Geo_FIPS V Ioin Options Keen all records	
	Geo_FIPS loin Options Solution Controls All records in the target table are shown in the resulting table. Unmatched records will contain null values for all fields being appended into the target table from the join table.	
	Geo_FIPS V Ioin Options Keep all records All records in the target table are shown in the resulting table. Unmatched records will contain null values for all fields being appended into the target table from the join table. Keep only matching records	
	Geo_FIPS Ioin Options Ioin Coptions Imatched records All records in the target table are shown in the resulting table. Unmatched records will contain null values for all fields being appended into the target table from the join table. Imatched records Keep only matching records If a record in the target table doesn't have a match in the join table, that record is removed from the resulting target table.	
- 1	Geo_FIPS ioin Options Keep all records All records in the target table are shown in the resulting table. Unmatched records will contain null values for all fields being appended into the target table from the join table. Keep only matching records If a record in the target table doesn't have a match in the join table, that record is removed from the resulting target table. Validate Join	

3. Export a copy of the tracts file with the joined data.

Right click on the ACS_boston_2019_tracts_final.shp layer and navigate to Data -> Export Data. Save this as Tracts_Education_2017.shp in your working space for the week.

	Convert Symbology to Representation	· · ·	X Cont	1 TO REAL ST
	Data 🔸	伦	Repair Data Source	- GRAAM
\diamond	Save As Layer File	\diamond	Export Data	A A A A
ø	Create Layer Package		Export To CAD	Frank AZ WZZ
~	Properties		Make Permanent	Export Data
			View Item Description	Save this layer's data as a shapefile or geodatabase feature class
		1	Review/Rematch Add	ISSES R & ALLA PARA
		-	\wedge \cup \square	ACTINATION A

Add the Tracts_Education_2016.shp file that you just created to your map document. Your file should look something like this.

2. Extract Data for the Lower Charles River Watershed

The data currently shows all tracts in all of Middlesex, Norfolk, and Suffolk Counties. These counties make up a large portion of the Boston Metropolitan Area, and we don't need to show all of the tracts, only the ones that are in the Lower Charles River Watershed. To do this, we are going to extract the tracts that fall within the Lower Charles River Watershed using a shapefile for the Watershed. There are a couple of methods to complete this.

1. Add the Watershed shapefile

The first step is to add the Charles River Watershed shapefile provided in our weekly materials. Go to Add Data and navigate to your workspace. Click and add **CharlesRiverWatershed_PRJ.shp** to your map document.

Select By Location

2. Extract Tracts that Fall within the Watershed

Select features from one or more target layers based on their location in relation to the features in the source layer.

Selection method:
select features from \sim
Target layer(s):
charlesRiverWatershed_PRJ ✓ Tracts_Education_2017 ACS_boston_2019_tracts_final
Only show selectable layers in this list
Source layer:
🔗 charlesRiverWatershed_PRJ 🔽
Use selected features (0 features selected)
Spatial selection method for target layer feature(s):
intersect the source layer feature $\qquad \qquad \lor$
Apply a search <u>di</u> stance 30000.000000 Feet
About select by location OK Apply Close

Extracting the tracts that are within the watershed can be accomplished in a number of ways. We are going to use the **Select by Location** tool and extract all the tracts that intersect (are contained by or touch the boundary of) the Lower Charles River Watershed. The Select by Location tool is in the Selection dropdown menu at the top of your screen.

The Select by Location dialog allows you to select features in a layer according to a spatial relationship with another layer. Following through the dialog, set the Selection method to 'select features from' and then the **target layer** to be **Tracts_Education_2017**.

The **source layer** is the basis of selection. Set this to be the Lower **Charles River Watershed layer**.

The selection method offers many options, we encourage you to explore them. For this, set the selection method to **'intersect the source layer feature'**. Do not enter a search distance.

In simple terms, this tells the software to select all tracts from the tracts layer that intersect the watershed layer.

Your selection should look like the following.

Export this as its own shapefile.

With the Tracts selected, right click on the Tracts_Education_2017 layer and export your data. Make sure you export the **Selected features**. Save it as **Watershed_Tracts_Edu_2017.shp** in your workspace.

Add it to your map when the export is completed. Turn off your other layers **and make sure all selections are cleared**.

Turn off all layers except for Watershed_Tracts_Edu_2017.shp. Your map should currently look like this. Colors may vary.

Hint: Right click on Watershed_Tracts_Edu_2017 and select Zoom to Layer. Toggle off the visibility of the other layers.

3. Symbolize your Data

Using the methods we have learned in previous weeks, symbolize the map to make a choropleth map showing some attributes. Let's explore the data to make sure everything looks okay. First, we can check if tracts with zero population actually make sense.

1. Find tracts with zero population

One good way to check the accuracy of the data is see where zero values are found. Zero values can expose where parks or other non-residential features are located. Open the attribute table for Watershed_Tracts_Edu_2017 **and Select by Attributes** from the Table Options menu. Set our Selection query to read "POP_EDU" = 0.

Your data should now look like the following. Tracts with zero population are highlighted. Notice that this appears to be correct. Tracts with zero population include the Boston Common, Arnold Arboretum, parks in South Boston, and the Esplanade along the Charles River.

2. Normalize on the Fly

Clear our selection by going to **Selection -> Clear Selected Features**. Use the \square button to do so. Now let's make a Population map showing percentage of individuals that have less than a High School degree.

Right-click the layer and go to **Properties -> Symbology** to make a map that shows the **percentage of the population 25 years and older (POP_EDU) that have less than a high school degree (LESS_HS).** Give it five classes, and use a natural breaks classification.

The Value field ought to have LESS_HS and you ought to normalize your data using the POP_EDU field.

Notice that there are certain locations that are not filled in. These are the same tracts that have zero population. These are often parks or non-residential areas. When you normalize, you are really taking the number of individuals with no high school diploma (LESS_HS) and dividing it by the total population of persons 25 and over (POP_EDU). GIS is doing the division on the fly and removing those parcels

where there are zeros in the denominator. GIS automatically will remove those from the visualization.

To make this a permanent change, we have to make a new field in our database that contains our normalized data.

3. Create a new field to hold a normalized value

Earlier in this exercise, we added a field in Excel to hold the normalized value of Master's Degree holders. Then we added a field to our DBF. Let's do this again in GIS with a Shapefile, but this time, find the percentage of individuals who have not received a high school diploma, as opposed to those individuals who possess a Master's level degree.

First make sure nothing is selected by going to **Selection > Clear Selected Features**. Then open the attribute table and click on the Options tab. Navigate to Add Field.

	9 - 140 63 to the X	-		
10	Ind & Replace		1	1.0
* ta	Select By Attributes	20	STEID	C
0	Clear Selection	-	36005000100	0050
6	Switch Selection	-	36005000200	0050
	Strices Selection	-	36005000500	0050
	Select All		36005001100	0050
	Add Field_		36005001500	0050
	Ture All Fields On		36005001600	0050
1000	Tum All Fields On		36005001700	0050
_	Show Field Aliases		36005002000	0050
	Arrange Tables		36005002300	0050
		-	36005002400	0050
	Restore Default Column Widths	-	36005002500	0050
	Restore Default Field Order	-	36005002702	0050
	Infer and Delater		36005002800	0050
	Joins and Melates		36005003100	0050
	Related Tables	· [36005003300	0050
1.0	Create Graph		36005003500	0050
-	Add Table or laws	- E	36005003600	0050
	Add Table to Layout	_		
2	Reload Cache	1.2	Calendard	
a	Print	- 13	Selected)	
1	- Thinks	1.1		
	Reports		~	_
	Export		3	
	Appearance		5 2	1

Add Field		×
Name:	P_LESSHS	
Туре:	Double	\sim
Field Pro	perties	
Precisio	on 0	
Scale	0	
	ОК С	ancel

Call the field P_LESSHS and make it data type Double. Double allows the field to contain decimal points. Leave Precision and Scale as the defaults. Click OK.

Scroll over in the attribute table to see the new blank field. Next we want to calculate the values in the field. We are going to fill the field with the value of LESS_HS/POP_EDU. In order to ensure we don't divide where the denominator is 0, we need to perform the calculation where POP_EDU is not equal to 0. Recall we addressed this issue in Excel by using an IF statement.

Select by Att	tributes				×
Enter a WHE	RE clause to	select records	in the table	window.	
Method :	Create a ne	w selection			\sim
"OID_"					^ -
"Geo_FIPS	" IE"				
"POP_EDU	J"				
"LESS_HS					~
= <	> Like				
>	= And				
< <	= Or				
_ % ()) Not				
ls In	Null	Get Unique	Values Go	To:	
SELECT * FF	ROM Watersh	ed_Tracts_Ed	u_2014 WH	ERE:	
"POP_EDU	' <>0				^
					~
Clear	Verify	Help	Loa	d	Save
			Apply		Close

In the Attribute Table, go to Table Options -> Select by Attributes, and enter "POP_EDU" <> 0 (the <> sign means NOT EQUAL TO). Click Apply. When you use Field Calculator, it will only run the calculation on features you have selected, meaning our calculator will only run on census tracts that have POP_EDU not equal to zero. Highlight the P_LESSHS field, right click, and select Field Calculator. A dialog will appear asking if you want to calculate outside of an edit session. Click OK.

The Field Calculator dialog will open. In the calculation window, type ([LESS HS]/[POP EDU]) * 100. This will populate the P_LESSHS field with a value representing the percentage of people 25 years and older with less than a high school degree. Click OK.

ricio carculator			×	
Parser	OPuthon			Be sure to clear selected
Eielder	Oryana	Turney	E-matterner	
ricius.		Type:	Functions:	
Geo_FIPS	^	 Number 	Abs () Atn ()	
POP EDU		Ostring	Cos ()	
LESS HS		0.000	Fix ()	
MORE HS		Ogate	Int()	
SOME COL			Log()	
HAS BA			Sar()	
HAS MAST			Tan ()	
HAS PROF	~		3-1-4-3 4 241	
Show Codebloo	dk		/ & + - =	
P_LESSHS =				
(00000000000000000000000000000000000000				
About calculating	Failde			
About calculating :	fields	Qear	Load	

features.

4. Symbolize using the Normalized Value

Now we can symbolize our map based on P_LESSHS. Taking a look at the field will show the percentage of people 25 years and older with less than a high school degree for each census tract. Right-click the layer and go to Properties > Symbology to make a map that shows the percent of people that have less then a high school degree. I am going to make mine by giving myself five categories and use the Jenks Natural Breaks classification scheme. Using this scheme gives unrounded number breaks for each class, so adjust your classification breaks to be 5, 10, 20, 30, and leave the last value as is. Your symbolized map should look like the following.

			110100	Dennuon qui	siy Labels	00110 0 1101	ates nine	PITML Pop
ow.	Draw qu	uantities usin	g color t	o show valu	es.		Import	
ategories	Fields				Classifica	ation		
luantities	Value:	P LESS	HS	~		Manual		
-Graduated colo	rs				Classes	6	Classifie	
 Graduated symbol 	pols Normaliza	ation: none		~	Cidosecs.	0 ~	Cidsolly	
 Proportional syn 	nbols							
- Dot density	Color Ram	ip:		~				_
narts Iultiple Attribute	Symbol	Range			Label			
		0.00000						
		0.000001 - 5.0	00000	, i	1 to 5			
		5.000001 - 10	000000		.1 to 10			
		10.000001 - 20	0.000000	1	0.1 to 20			
y is	¥C,	20.000001 - 3	0.00000.0	2	0.1 to 30			
K M		30.000001 - 4	7.525739	N.	Aore than 30			
	<u> </u>							
5-5-55						_		
	Show o	class ranges usir	ng feature	values			Advance <u>d</u>	

Alternative Classification Strategy: You will notice if you do the above classification and symbolization, you lose the zero values into a class. These are often important to call out in our datasets, as they represent parks, cemeteries, ponds, or another anomalous areas. First, change our classification to **six classes**. Because we set the map to have five classifications above, we can keep the breaks the same (5, 10, 20, and 30), but lets change our symbology to have six classifications. Make the break for the first class zero. This will add a zero classification to our dataset that will specifically call out all tracts with percentage value zero.

With regards to color, give the 0 value a white, and adjust your ramp. Your map, with the alternative classification scheme, will look like the following:

5. Add Context and Supplemental Data

We have a symbolized map of the tracts in the Lower Charles River Watershed, but as we all know, the Boston area does not float in a vacuum. Add some additional data like the watershed boundary, water features, town boundaries, and major highways to add context to your map.

a. Add Data

Add the following files to your map:

BOUNDARY_POLY_PRJ – City Boundaries EOTMAJROADS_RTE_MAJOR_PRJ – Major Roads and Highways MassHydro_PRJ – Waterbodies boston_openspace_prj - Parks

b. Organize your Table of Contents and Symbolize

Just as we have done in previous maps, organize the layers in the Table of Contents so that the tracts layer is on the bottom, and the boundaries and roads are on the top. For the watershed boundary and town boundaries, set the polygon fill to be none. This will allow the tract data to be visible. Your map should look like the following. Don't worry about the legend yet, we will add it later. Save your map as Boston_Education_ACS2017.mxd to your weekly workspace.

OBJECTIVE 4: MAKE A CHART FROM GIS DATA IN EXCEL

We have been working with the Charles River Watershed Association on some statistics for an environmental education center. The reports would like them to **include a spread of the education levels throughout the watershed.** Now that we have selected all the data for the watershed we can use graphics (such as bar charts) for them to insert into their report. It is a lot easier to make these in Excel – so we will export our data and open it in Excel.

a. Export the Attribute Data of 'Watershed_Tracts_Edu_2017.shp' to DBF

Open the Attribute table for Watershed_Tracts_Edu_2017. Go to Table Options > Export. Save the attribute table with the name 'education_charlesRiver.dbf' and save it as type 'dBASE Table'. **Do not add the table to your map. If you do, ArcGIS will lock it and it will not open elsewhere.** We are going to open it in Excel.

vame:	education_charlesRiver.dbf		Save
Save as type:	dBASE Table	•	Cancel

b. To open the DBF file in Excel, you must open Excel first. Remember when opening a DBF file in Excel you need to Go to File >Open. Then navigate to the folder where you saved your DBF. In order to see your DBF as a possible file to open you need to choose "All Files" next to the file name.

d. We will make a bar chart that displays educational attainment in the Lower Charles River Watershed. Scroll to the right in the spreadsheet to find the educational attainment data.

HINT: Freeze the top row so you can always see your column headers. You can do this by going to View > Freeze Panes > "Freeze Top Row"

First, sum each column to find the total population, total population with less than a high school diploma, total population with a high school diploma, etc. To do this, at the bottom of the data, in the POP_EDU column, enter "=SUM(...)" and then highlight all of the data in the column. Close the parenthesis, and hit enter. This will give you a total for the column, and the total number of persons age 25 or over in tracts that intersect the Lower Charles River Watershed. Repeat this for each column.

Geo_FIPS	Geo_NAME	POP_EDU	LESS_HS	MORE_HS	SOME_COL	HAS_BA	HAS_MAST
25025010600.00000000000	Census Tract 106, Suffolk County, Massachusetts	2829.0000000000	74.0000000000	193.0000000000	250.0000000000	990.0000000000	718.00000000000
25025120500.00000000000	Census Tract 1205, Suffolk County, Massachusetts	1965.00000000000	158.00000000000	393.00000000000	237.00000000000	658.00000000000	362.00000000000
25025070600.00000000000	Census Tract 706, Suffolk County, Massachusetts	1996.00000000000	25.0000000000	62.00000000000	164.00000000000	829.00000000000	549.00000000000
25025082100.00000000000	Census Tract 821, Suffolk County, Massachusetts	3363.00000000000	774.00000000000	1255.00000000000	752.00000000000	342.00000000000	129.00000000000
25025070900.00000000000	Census Tract 709, Suffolk County, Massachusetts	2179.00000000000	322.00000000000	226.00000000000	235.00000000000	603.00000000000	413.00000000000
25025101101.00000000000	Census Tract 1011.01, Suffolk County, Massachusetts	2579.00000000000	625.00000000000	919.00000000000	654.00000000000	222.00000000000	159.0000000000
25025120600.00000000000	Census Tract 1206, Suffolk County, Massachusetts	1794.00000000000	63.00000000000	70.00000000000	125.00000000000	702.00000000000	361.00000000000

2. Create a new sheet in your workbook and copy these totals into the new sheet. Highlight the cells you want, (the top row, and our calculations), right-click and copy, then click on the new sheet. Right-click and **Paste Values**. Do the same with your heading names. The new sheet should look like this (the numbers might be different). **Delete P_LESSHS and PERC_MAST, we do not need it for this chart, nor do the values make sense.**

POP_EDU	LESS_HS	MORE_HS	SOME_COL	HAS_BA	HAS_MAST	HAS_PROF	HAS_PHD
799347.00000000000	69481.00000000000	124714.00000000000	120341.00000000000	229800.00000000000	156181.00000000000	50149.00000000000	48681.00000000000

3. Select the data and choose Copy. Click on an empty cell below the data and choose Paste > Transpose. Your new sheet should now look like the following. Transposing our data makes it easier to make a chart.

POP_EDU	LESS_HS	MORE_HS	SOME_COL	HAS_BA	HAS_MAST	HAS_PROF	HAS_PHD
2889.00000000000	132.00000000000	758.00000000000	678.00000000000	604.00000000000	488.00000000000	93.0000000000	136.00000000000
3094.00000000000	174.00000000000	484.00000000000	292.00000000000	797.00000000000	888.00000000000	246.00000000000	213.00000000000
799347.00000000000	69481.0000000000	124714.0000000000	120341.0000000000	229800.0000000000	156181.0000000000	50149.0000000000	48681.00000000000
POP_EDU	799347.00000000000						
LESS_HS	69481.00000000000						
MORE_HS	124714.00000000000						
SOME_COL	120341.00000000000						
HAS_BA	229800.00000000000						
HAS_MAST	156181.00000000000						
HAS_PROF	50149.00000000000						
HAS_PHD	48681.0000000000						

4. Now we need to make a percent field. Highlight the first empty cell to the right of the LESS THAN HIGH SCHOOL DEGREE and enter the formula "=(B5/\$B\$4)". This will calculate your percentage of the population 25 years and older. Drag the formula down so that it is applied to all the cells. **(The dollar**

signs in the denominator means that the data will always reference the total population when you drag the data down.)

POP_EDU	LESS_HS	MORE_HS	SOME_COL	HAS_BA	HAS_MAST	HAS_PROF	HAS_PHD	
2889.00000000000	132.00000000000	758.0000000000	678.0000000000	604.00000000000	488.00000000000	93.0000000000	136.00000000000	Ε
3094.00000000000	174.00000000000	484.00000000000	292.0000000000	797.00000000000	888.00000000000	246.00000000000	213.00000000000	
799347.00000000000	69481.00000000000	124714.00000000000	120341.00000000000	229800.00000000000	156181.00000000000	50149.0000000000000	48681.0000000000	
POPULATION 25 AND	799347.00000000000							
LESS THAN HIGH SCHO	69481.00000000000	=B5/\$B\$4						
MORE THAN HIGH SCH	124714.00000000000							
SOME COLLEGE	120341.00000000000							
HAS BACHELORS DEGI	229800.00000000000							
HAS MASTERS DEGRE	156181.00000000000							
HAS PROFESSIONAL D	50149.00000000000							
HAS PHD	48681.00000000000							

5. Rename the fields to create headings that make better sense. These should be descriptive for the reader.

POP_EDU = POPULATION 25 AND OVER LESS_HS = LESS THAN HIGH SCHOOL DEGREE MORE_HS = MORE THAN HIGH SCHOOL DEGREE SOME_COL = SOME COLLEGE HAS_BA = HAS BACHELORS DEGREE HAS_MAST = HAS MASTERS DEGREE HAS_PROF = HAS PROFESSIONAL DEGREE HAS_PHD = HAS PHD

Following these changes, the table should look like the following.

POPULATION 25 AND	799347.00000000000	
LESS THAN HIGH SCHO	69481.0000000000	0.08692220025
MORE THAN HIGH SCH	124714.0000000000	0.15601985120
SOME COLLEGE	120341.0000000000	0.15054913573
HAS BACHELORS DEGF	229800.0000000000	0.28748465935
HAS MASTERS DEGREE	156181.00000000000	0.19538573361
HAS PROFESSIONAL D	50149.00000000000	0.06273745945
HAS PHD	48681.0000000000	0.06090096041

6. With your Ctrl key pressed down (or option-control on an Apple keyboard), highlight the fields you want to make the table with. When you highlight the fields, it will look like below.

POPULATION 25 AND OVER	799347	
LESS THAN HIGH SCHOOL DEGREE	69481	0.09
MORE THAN HIGH SCHOOL DEGREE	124714	0.16
SOME COLLEGE	120341	0.15
HAS BACHELORS DEGREE	229800	0.29
HAS MASTERS DEGREE	156181	0.20
HAS PROFESSIONAL DEGREE	50149	0.06
HAS PHD	48681	0.06

7. Click on the Insert tab and select the Column or Bar Chart option in the Charts section. Choose 2-D Stacked Bar. You should get a chart like the following.

toSave 💽 🛱 🤤 🤆	Ŧ	ed	lucation_charlesRiver_charts.xlsx - Exc	el
le Home <mark>Insert</mark> Draw	Page Layout Formu	las Data Review	View Help 🔎 Search	
otTable Recommended Table PivotTables	tions Get Add-ins	Recommended Charts		3D Map - Tours Sparklines
1		3-D) Column	
$1 \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot $	LESS THAN HIGH SC	100L DEGREE		
А	В	c		F
POP_EDU	LESS_HS	MORE_HS S		HAS_MAST
2889.0000000000	132.0000000000	758.0000000000	7 Dai	00000 488.00000000
3094.0000000000	174.00000000000	484.0000000000		00000 888.00000000
799347.0000000000	69481.00000000000	124		100
POPULATION 25 AND OVER LESS THAN HIGH SCHOOL DEGREE	799347.00000000000 69481.0000000000	HAS PROFESSIC	Bar Stacked Bar Use this chart type to: • Compare parts of a who categories. More Colum • Show how parts of a who	ole across
MORE THAN HIGH SCHOOL DEGREE	124714.0000000000	HAS BACHELORS	DEGREE Use it when:	0
	229800 00000000000	SOME	COLLEGE • The category text is lon	g.
HAS MASTERS DEGREE	156181 00000000000	MORE THAN HIGH SCHOOL	DECREE	
	50149 00000000000	MORE THAN HIGH SCHOOL	DEGREE	
HAS PHD	48681.00000000000	LESS THAN HIGH SCHOOL	0.000050000000000000000000000000000000	300025000200000000000000000000000000000
			Corior1 Corior7	
			Series1 Series2	
		0	0	0

Adjust the formatting to improve your chart, remember that labeling your chart is very important. Give the name of the title to something that logically represents the chart. Helping the reader interpret your chart is important, if numbers are not visible or legible, the teaching staff will not be able to grade your assignment and your potential clients will not be able to understand the information you are presenting.

To access formatting options, click on the various components of your chart.

To label the bottom axis, click on the bottom axis, then go to Format Axis. Axis Options -> Number -> Category -> Percentage. This will change the bottom axis labels to a percentage value.

To label the individual bars, right-click on the bars in the chart and go to Add Data Labels. To format these, click again once you have added data labels and navigate to Format Data Labels... Here in Label Options, you will see a Number option. Set the category to Percentage, and use 1 decimal place.

To change the title, click on the Chart Title and edit the text.

Your final chart should look something like the following. This is a very basic bar chart. While effective, we encourage you to be creative and explore the various chart settings.

OBJECTIVE 5: CREATE A LAYOUT WITH MULTIPLE MAPS

In the following part of this exercise, we are going to create two maps side by side that show the variables we created. One map will show the Percentage of Individuals with a Masters Degree, which we

created in Excel, and the other map will show the Percentage of Individuals without a High School diploma, which we created in ArcGIS. The practice of this is the same as creating a locator map.

1. Return to ArcMap and open Boston_Education_2017_ACS.mxd (the map document we have been working in).

2. In the bottom of the map document, toggle from Data View to Layout View to see our page layout. Remember we have done this to compose maps in previous weeks.

3. In File -> Page and Print Setup, set the orientation to be Landscape. Click OK. We are going to lay our two maps side by side.

4. Adjust the location of your data frame. If you right click on the data frame and enter the Data Frame Properties, you can be precise with your layout size and position. When adjusting size and position settings, remember you are working on an 8.5 inch by 11-inch page in Landscape orientation. The origin in your measurements is in the lower left corner, 0 inches, 0 inches. In the screenshot below, I set the anchor to be in the lower left, then set a left margin at .35 inches, and a bottom margin at 1 inch. The size of the data frame is set to 5 inches by 5 inches. Click OK.

General	Data Frame	Coordinate System	Illumie	aon Grids
eature Cache	Annotation Group	ps Extent Indicato	rs France	Size and Position
Position		Size		
X:	0.35 in	Width:	5 in	
Y:	1 in	Height:	5 in	
As Offset	t Distance	As Percentag	e	
Anchor Point	:	Preserve Asp	ect Ratio	
— —(Element Name		

Your map will look like the following. You might need to zoom into the Boston area to adjust the extent of area shown in your map.

5. Add a second data frame by going to Insert -> Data Frame. A new data frame will appear in the center of your view.

6. Adjust the location of your new data frame. Right click on the data frame and enter the Data Frame Properties. Again, when adjusting size and position settings, remember you are working on an 8.5 inch by 11 inch page in Landscape orientation. The origin in your measurements is in the lower left corner, 0 inches, 0 inches. In the screenshot below, I set the anchor to be in the lower right, then set a left margin at .35 inches by using 10.65 inches (11 inches minus .35 inches), and a bottom margin at 1 inch. The size of the data frame is set to 5 inches by 5 inches. Click OK.

-Position		Size				
X:	10.65 in	Width:	5 in			
Y:	1 in	Height:	5 in			
As Off	set Distance	As Perc	As Percentage			
Anchor Po	Anchor Point:		Preserve Aspect Ratio			
		Element Na	me I Frame			

Figure 56. Set the parameters

Your layout should now look like the following:

7. Rename the Data Frames. Click on the names of the data frames (in the 'Table of Contents') and edit them. Call the left data frame "Less HS" and the right data frame "Has Masters".

8. We need data in our new data frame. This is easy to do, drag the layers in 'Less HS' to 'Has Masters'. It will create a copy for you. You will likely need to zoom into Boston to see the data clearly. Note, I'm also going to turn off my town boundaries and roads.

At this point, your map will look like the following.

9. The maps both show the same variables. Re-symbolize the right map to be symbolized based on the normalized Master's Degree data we created in Excel. Right click on Watershed_Tracts_Edu_2016 in the Has Masters data frame and go to Properties -> Symbolize. Remember the field containing our data is called PERC_MAST. Set the colors and breaks to be the same as the other map. Symbolized, your map will look like the following.

10. When comparing two maps, it is important to compare apples to apples. This means making the scale the same on each map, and the display extent the same for each map. Let's set this up.

a. Right click on 'Less HS' in 'Table of Contents' to activate the 'Less HS' data frame.

b. Set the display extent for 'Less HS' by right-clicking on 'Watershed_Tracts_Edu_2017' and selecting zoom to layer. The map will zoom to the extent of your layer.

c. Set the map scale. The map is not completely centered. At the top of your map document is the map scale control. Change this for 'Less HS' to 1:305,000.

d. Click on 'Has Masters' (in 'Layout View', right frame) to activate the 'Has Masters' data frame.

	oupe E	stert indicators	Frame	Size a	and Position
General Data Frame	Coord	inate System	Iluminat	ion	Gride
Extent					
Other Data Frame		~			
Derive extent from anoth	er data fra	me's extents			
LESS HS		· *			
Margine	Specify u	ing:			
100%	Percentz	~			
Zoom to features that inte	rsect the	other data frame	's extent:		
None		*			
Oother:	are seed				
O Other: Scenofy Estern.					
O Other: Seecily Extent. Clip Options No Clipping	(product)	¥			
Other: SoeofyEstert Dip Optons No Olipping Exclude Langers	(Friday)	₩. Border:			
Other: Secondy Extent Dip Options No Opping Exclude Layres Dip Grads and Gratsules		₩ Border			T
O Other: Socially Extenses Dip Options Realized tarres O Op Onde and Cristicales		v Border			

e. We are going to set the extent of this data frame to match the LESS HS frame. Right click and go to Properties. Click on Data Frame, and set Extent to be Other Data Frame. Here select LESS HS, and set the margin to be 100%.

Completing these steps, your map document should look like the following.

11. Add a Legend. Let's right click on our Watershed_Tracts_Edu_2016 layer, go to Properties > Symbology Under labels, edit text to contain the following breaks:

0 0.1-5% 5.01-10% 10.1-20% 20.1-30% More than 30%

This will allow us to create only one legend for both of our maps. One legend won't always be an option because datasets can be very different, but it does in this circumstance.

Because we used the same scale for each map, we can add one legend that will work for both maps. Go to Insert -> Legend. Symbolize the Legend based upon the Watershed_Tracts_Edu_2017 layer. Using the

legend design skills you have learned in the first couple weeks of class, add the legend in a nice location at the bottom of your map.

If you had differing scales and legends, you can right click the data frame names and scroll down to activate in order to ensure you are creating a legend for the appropriate data frame.

12. Add the other map elements to complete your map. Click on the map to activate its respective data frame, then for each, add an informative title, scale bar, and north arrow, and in your layout, put information on date, author, and data source. Use the map design skills you learned in the first two weeks of class. Your final output will vary based on design and preference. My final map looked like the following. Note the differences between the two datasets!

11.205 Introduction to Spatial Analysis Fall 2019

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.