SRE Economics Lecture 1

The Economics of Green Buildings (1)

Siqi Zheng

Feb 2023

(MIT Center for Real Estate)

1

Triple Bottom Lines

²Center for Real Estate

Шiт

Center for Real Estate

		Private		Public	
Equity	•	Private Property		REITs	
		Assets		Stock	
	•	PE			
Debt	•	Mortgage		Bond	r = W
	•	Loan	•	MBS	avera

• WACC (weighted erage cost of capital)

Millennium Partners

MILLENNIUMTOWER, 2008 Location: San Francisco

Focused on **ultra-luxury** furnishes and amenities for wealthy condo owners (2016: had sunk 16 inches and tilted)

Center for Real Estate

MILLENNIUM PLACE (HAYWARD PLACE), 2013 Location: Boston

Focused on **job creation**, downtown revitalization

MILLENNIUMTOWER, 2017 Location: Boston

Focused on **ultra-luxury** + **health and wellness** (two-story club, the largest residence-only fitness center) WINTHROP CENTER, 2022 Location: Boston

Sustainability Passive House (office) WELL Gold and LEED Platinum

Photos © Handel Architects. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

HOW MARKET MAY WORK

Cost Benefit Analysis (CBA)

- Decision-making process:
 - If $B \ge C$ (NPV ≥ 0): support the action, or $B/C \ge 1$ when C!=0.
 - Otherwise, oppose the action.

$$NPV(CF_0, ..., CF_n) = \sum_{i=0}^{n} \frac{CF_i}{(1+r)^i} \xrightarrow{\qquad} Risk$$

$$\uparrow$$
Discount rate: cost of capital

Cash flow for each period:

$$CF_i = B_i - C_i$$

Center for Real Estate

Year:	0 1	10	11
Item:			
Potential gross income (Rent/SF \times Square feet)	50,000.00	59,754.63	60,949.72
Vacancy allowance (Vacancy rate \times PGI)	4,000.00	4,780.37	4,875.98
Effective gross income	46,000.00	54,974.26	56,073.74
Operating expenses (OpEx)	17,500.00	20,914.12	21,332.40
Net operating income (NOI)	28,500.00	34,060.14	34,741.34
Capital improvement expenditure (CapEx)	4,275.00	5,109.02	5,211.20
Net cash flow (NOI - CapEx)	24,225.00	28,951.12	29,530.14
Reversion (only in last year and years of partial sales)		579,022.35	`
Net cash flow incl. reversion	24,225.00	607,973.47	\backslash
PV @ 8% \$443,979.	.91		

Owner perspective: (compare PV with the purchasing price)

Last year CF/Cap rate (6%)

Green Building

Hypothetical Pro-forma

What will green buildings affect?

A hypothetical office building

PliT

	Owner perspective: (compare PV with the	purchasing price)	
	Year:	0 1	10 11
	Item:		
	Potential gross income (Rent/SF \times Square feet)	50,000.00	(Tenant) Health +
	Vacancy allowance (Vacancy rate \times PGI)	4,000.00	Productivity + Energy saving
	Effective gross income	46,000.00	37,977.20 30,073.77
	Operating expenses (OpEx)	17,500.00	Energy saving
	Net operating income (NOI)	28,500.00	34,060.14 34,741.34
	Capital improvement expenditure (CapEx)	4,275.00	Lower depreciation
	Net cash flow (NOI - CapEx)	24,225.00	28,951.12 29,530.14
	Reversion (only in last year and years of partial sales)		579,022.35
	Net cash flow incl. reversion	24,225.00	607,973.47
tical office building	► PV @ 8% \$4	43,979.91	
	Lower risk, Lower	Higher NPV and thus	Last year CF/Cap rate (6%)
	cost of capital	to-pay (WTP)	Lower risk,
Contor for Roal Estate	Image © source unknown. All rights reserved. This	content is excluded from our	Lower cap rate
senter for heat Estate	Creative Commons license. For more information, s	ee https://ocw.mit.edu/help/fa	.q-fair-use/.

Life-Cycle Cost Analysis (LCCA) in Green Buildings

 $R \times (1+6.3\%)$

Tenant's analytical horizon

Any other benefits?

Monthly rent

Why do green buildings have smaller operating costs?

- Energy & Resource savings
- Maintenance cost reduction

+

Net present value analysis of the operational cost benefits of 33 LEED certified buildings

© World Green Building Council. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/help/faq-fair-use/</u>.

Operating Cost Split

• Energy & Resource savings Operating Cost $\Delta 0_1$ Owners Lease contract Maintenance cost reduction Tenants ("Split Incentive" in the Operating Cost $\Delta 0_2$ next lecture) Rent • Human Capital Cost: ΔR Tenants Productivity/Health/Well-being Others 4% Energy 1% Rents 10% (company) "Healthy Buildings" lecture WGBC.2013. "THE BUSINESS CASE FOR GREEN BUILDING: A Wages Review of the Costs and Benefits for Developers, Investors and 85% Occupants" enter for Real Estate

Rental Premium of Green Building

Author,	Pont Duaminum		%
Year	пени гтешиш	ES (95% CI)	Weight
Bond and Devine (2016)		0.05 (0.02, 0.08)	3.90
Bond and Devine (2016)	+	0.09 (0.07, 0.12)	4.13
Cajias and Piazolo (2013)	•	0.07 (0.04, 0.09)	4.21
Chegut, Eichholtz, and Kok (2014)		0.31 (0.21, 0.42)	1.71
Devine and Kok (2015)	•	0.03 (0.01, 0.04)	4.34
Devine and Kok (2015)	•	0.04 (0.02, 0.05)	4.29
Devine and Kok (2015)		0.10 (0.08, 0.12)	4.29
ichholtz, Kok, and Quigley (2013)	•	0.03 (0.01, 0.04)	4.37
eige, McAllister, and Wallbaum (2013)		0.11 (-0.38, 0.60)	0.12
Fuerst and McAllister (2011a)		0.09 (-0.03, 0.21)	1.40
uerst and McAllister (2011b)	1000	0.05 (0.00, 0.10)	3.29
Fuerst and McAllister (2011c)		-0.56 (-0.79, -0.34)	0.53
uerst and van de Wetering (2015)		0.21 (0.08, 0.34)	1.26
uerst, van de Wetering, and Wyatt (2013)		0.11 (-0.02, 0.25)	1.18
Babe and Rehm (2014)	•	-0.02 (-0.04, 0.01)	4.16
oirala, Bohara, and Berrens (2014)		0.23 (0.18, 0.29)	3.02
lappi?Choulet and Décamps (2013)	-	0.02 (-0.01, 0.04)	4.12
lewell, MacFarlane, and Walker (2014)	1.	0.07 (0.04, 0.09)	4.12
Reichardt (2014)	+	0.03 (0.01, 0.06)	4.13
Reichardt (2014)	· · · · · · · · · · · · · · · · · · ·	0.07 (0.04, 0.10)	3.89
leichardt (2014)		0.10 (0.05, 0.15)	3.22
leichardt et al. (2012)	•	0.03 (0.01, 0.04)	4.40
Reichardt et al. (2012)		0.03 (-0.00, 0.06)	3.92
Robinson and McAllister (2015)		0.02 (-0.02, 0.06)	3.61
lobinson and McAllister (2015)	- Ta	0.07 (-0.05, 0.19)	1.45
Robinson and McAllister (2015)		0.14 (0.07, 0.22)	2.32
anchez-Ollero, García-Pozo, and Marchante-Mera (2014)		0.05 (0.02, 0.09)	3.75
zumilo and Fuerst (2015)	•	0.02 (0.01, 0.04)	4.35
Viley, Benefield, and Johnson (2010)	-	0.09 (0.06, 0.11)	4.11
Viley, Benefield, and Johnson (2010)	1-1-1-1	0.17 (0.08, 0.27)	1.92
Dheng et al. (2012)		-0.00 (-0.01, -0.00)	4.49
Overall (I-squared = 94.8%, p = 0.000)	▼ ♦	0.06 (0.04, 0.08)	100.00
VOTE: Weights are from random effects analysis	Î		

Dalton and Fuerst (2018): meta analysis of green real estate rents

Overall significant rent premium of 6%

- 5.4% commercial
- 8.2% residential

Studies also find 5% - 9% higher occupancy rates for commercial real estate.

Center for Real Estate

© Informa UK Ltd. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Life-Cycle Cost Analysis (LCCA) in Green Buildings

Owner's analytical horizon

Risk Mitigation

- Regulatory Risks: "Brown discount"
 - Case: NYC Local Law 97
- Market Risks: Green buildings have:
 - Lower cap rate
 - Higher resilience during down times
- Physical Risks

• Higher resilience against climate and other environmental risks

Center for Real Estate

Why do green buildings have higher asset value? Higher WTP;

- Higher rents, higher occupancy, lower turnover ΔR
- Lower operating cost

enter for Real Estate

• Lower expected rate of return

Cash Flow Parameter	Effect	Range	Mean	Median
Rental income	Increased	0.0%-23.0%	6.3%	4.6%
Occupancy	Increased	0.9%-17.0%	6.0%	4.3%
Operating costs Yield (risks)	Inconclusive Decreased	-14.3%-25.8% 0.36%-0.55%-point	-0.4% 0.46%-point	-4.9% 0.46%-point
Sales price	Increased	0%-43.0%	14.8%	14.1%

Sample: 71 reviewed publications 2008-2019, mainly in US, UK, AUS, CAN markets. (Leskinen, Vimpari and Junnil, 2020). © MDPI. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.

i

Higher Sales

Price

Market average vs. individual decision-maker

Trade-offs

Hypothetical Pro-forma

Green Building:

Шi

• Higher purchasing price

- Rental revenue ↑ 6.3%
- Occupancy $\uparrow 6\%$
- Operating cost $\downarrow 0.4\%$
- Cost of capital $\downarrow 0.46\%$

Should the owner willing to purchase a green building for \$50,000 extra

Center for Real Estate

Year:	0	1	•••	10	11
Item:					
Potential gross income (Rent/SF × Square feet)		53150.00		63519.17	64789.55
Vacancy allowance (Vacancy rate × PGI)		1318.12		1575.28	1606.78
Effective gross income		51831.88		61943.89	63182.77
Operating expenses (OpEx)		18528.09		22142.78	22585.64
Net operating income (NOI)		33303.79		39801.11	40597.13
Capital improvement expenditure (CapEx)		4995.57		5970.17	6089.57
Net cash flow (NOI - CapEx)		28308.22		33830.95	34507.56
Reversion (only in last year and years of partial sales)				732800.26	`
Net cash flow incl. reversion		28308.22		766631.20	\backslash
PV @ 7.5% \$5	64,113.22				
(Traditional building PV) \$4	43,979.91		T		
			Last	t year CF/	Lap rate

Owner perspective: (compare PV with the purchasing price) GREEN BUILDING

Higher Market Value of Green Building

Author,			%
Year	Sales Premium	ES (95% CI)	Weight
Aroul and Hansz (2012)	-	0.02 (-0.01, 0.05)	4.26
Bonde and Song (2013)	1 🛶	0.08 (0.04, 0.12)	3.88
Brounen and Kok (2011)	•	0.04 (0.03, 0.04)	4.79
Bruegge, Carrion-Flores, and Pope (2016)	•	0.01 (0.00, 0.02)	4.77
Cajias and Piazolo (2013)	•	0.28 (0.26, 0.31)	4.49
Cerin, Hassel, and Semenova (2014)	•	-0.06 (-0.08, -0.04)	4.53
Chegut, Eichholtz, and Kok (2014)		0.37 (0.17, 0.56)	0.66
Couch, Carswell, and Zahirovic-Herbert (2015)		0.09 (-0.62, 0.80)	0.06
Das and Wiley (2014)		0.11 (0.03, 0.18)	2.49
Das and Wiley (2014)	1 - HE-	0.16 (0.10, 0.23)	3.01
de Ayala, Galarraga, and Spadaro (2016)		0.10 (0.01, 0.19)	2.17
Deng and Wu (2014)		0.05 (0.04, 0.05)	4.80
Deng, Li, and Quigley (2012)		0.15 (0.09, 0.20)	3.26
Dermisi and McDonald (2011)		0.02 (-0.14, 0.18)	0.93
Dermisi and McDonald (2011)		0.21 (-0.02, 0.44)	0.52
Eichholtz, Kok, and Quigley (2013)	+	0.13 (0.10, 0.17)	4.10
Freybote, Sun, and Yang (2015)	•	0.04 (0.02, 0.05)	4.63
Fuerst and McAllister (2011a)		0.28 (0.16, 0.40)	1.43
Fuerst and McAllister (2011b)		0.30 (0.25, 0.35)	3.28
Fuerst and McAllister (2011c)		-0.55 (-0.77, -0.33)	0.54
Fuerst and Shimizu (2016)	•	0.05 (0.04, 0.05)	4.78
Fuerst et al. (2016)	+	0.11 (0.09, 0.13)	4.55
Högberg (2013)	•	0.04 (0.02, 0.06)	4.55
Jayantha and Man (2013)		0.06 (0.02, 0.11)	3.76
Miller, Spivey, and Florance (2008)		0.14 (-0.05, 0.33)	0.69
Miller, Spivey, and Florance (2008)		0.24 (-0.08, 0.56)	0.29
Nappi?Choulet and Décamps (2013)	-	-0.11 (-0.30, 0.07)	0.75
Newell, MacFarlane, and Walker (2014)		0.11 (-0.08, 0.30)	0.75
Robinson and McAllister (2015)		0.06 (-0.01, 0.13)	2.88
Robinson and McAllister (2015)		0.13 (-0.02, 0.29)	0.99
Robinson and McAllister (2015)		0.10 (-0.02, 0.21)	1.57
Shewmake and Viscusi (2015)	+	0.05 (0.03, 0.07)	4.54
Shimizu (2013)	•	0.06 (0.05, 0.07)	4.77
Yoshida and Sugiura (2015)		-0.11 (-0.22, -0.00)	1.70
Zheng et al. (2012)	•	0.00 (0.00, 0.01)	4.81
Overall (I-squared = 97.8%, p = 0.000)		0.08 (0.06, 0.09)	100.00
NOTE: Weights are from random effects analysis			
796	I 0	.796	

Dalton and Fuerst (2018) also look at evidence sales prices

Overall price premium of 7.6%

- For commercial 11.5%
- For residential 5.5%

© Informa UK Ltd. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/help/faq-fair-use/</u>.

Life-Cycle Cost Analysis (LCCA) in Green Buildings

Developer's evaluation horizon

Center for Real Estate

House cross section © Passive House Institute US; HVAC system and light bulb images © source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Why do green buildings have higher design & construction Costs?

0% to 12.5%

Cost premium for new green buildings (actual costs based on various studies)

0.3% to 12.8%

Cost premium for green retrofits (actual costs based on various studies)

enter for Real Estate

Decreasing Costs for Green Building Over Time

© World Green Building Council. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

 $\Delta C = f(skills, innovation,$

supply chain)

Is There a Business Case for Green Buildings?

HOW MARKET MAY FAIL

Negative Lifecyle Cost: Market Opportunity Unexploited

Exhibit 8.7.2

Global GHG abatement cost curve for the Buildings sector

Societal perspective; 2030

Mckinsey: "Carbon emissions in the Building sector can be substantially reduced, either with net economic benefits or at low cost."

Why are the vast negative cost green opportunity unexploited?

Note: The curve presents an estimate of the maximum potential of all technical GHG abatement measures below €60 per tCO₂e if each lever was pursued aggressively. It is not a forecast of what role different abatement measures and technologies will play. Source: Global GHG Abatement Cost Curve v2.0

© McKinsey & Co. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Market Failures Threaten the Three Bottom Lines

Center for Real Estate

Щі

Market Failures:

1. Information Asymmetry

2. Split Incentive (Econ Lecture 2)

3. Externality (Econ Lecture 8)

Information Matters!

- Do people really understand the 'greenness'?
 - Benefit underestimated
 - Cost overestimated

enter for Real Estate

• Information & knowledge matter!

Siqi's Research: Information and WTP for Green Buildings

• "The Role of Public Information in Increasing Homebuyers' Willingness-to-Pay for Green Housing: Evidence from Beijing." (Zhang, Sun, Liu and Zheng 2016, *Ecological Economics*)

Information & knowledge matter!

Fig. 3. Respondents' knowledge of Chinese green building label. Notes: 1 = "Do not know it"; 2 = "Only heard of it"; 3 = "Familiar. Know its logo"; 4 = "Very familiar. Has specialized knowledge about it".

enter for Real Estate

Courtesy of Elsevier, Inc., https://www.sciencedirect.com. Used with permission.

Even if people do understand the benefit in theory, can they distinguish green product?

- Indoor air quality/ energy efficiency
 - Experience good Quality of good only observed after consumption
- Sustainble materials/ toxic materials
 - Credence good

Quality cannot be observed even after consumption

²⁹Center for Real Estate

Image © source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Any misleading claims regarding the environmental practices of a company or the environmental benefits of a product or service.

Being advertised as an competitive advantage (selling point).

Siqi's Research: Greenwashing in China's Real Estate Market

• "The Nascent Market for 'Green' Real Estate in Beijing." (Siqi Zheng, et al., 2012, *European Economics Review*)

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/help/faq-fair-use/</u>.

Early 2000: no official green certificate in China. We used Google to construct each development project's "self-advertised" green index.

We find:

- Presale stage: a significant price premium
- Resale and rental stages: this premium disappeared

Information asymmetry creates the market for lemons

Adverse selection

Center for Real Estate

Information asymmetry creates the market for lemons

Center for Real Estate

The role of certificates: Solving Information Asymmetry

- What are the **<u>requirements</u>** for certificates to solve market failure:
 - Must clearly differentiate green buildings from others
 - And be impossible for non-green buildings to be certified (green washing)
 - More valuable to customers than the costs of obtaining certification
 - Reasonable costs + accurate assessment of premiums associated with certifications

Logos © the respective certification agencies. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/help/faq-fair-use/</u>.

		Top 10 G	reen Building Certifications		measurab
	Organization	Country Scope	Project type(s)	Focus Areas	Accreditation Details
BREEAM	BRE group	International	New and existing buildings, major renovation projects, community planning	Energy Water Pollution Transport Materials Waste Management processes	Rating & Certification Standard
ENERGY STAR	United States Environmental Protection Agency	US & Canada	Existing buildings	Energy Water Carbon emissions Waste	Data Management System, Ranking, & Certification System
Green Globes	Green Building Initiative	US & Canada	New and existing buildings, sustainable interiors	Project management Energy Water Materials & resources Emissions Indoor environment	Rating & Certification Standard
LEED	U.S. Green Building Council	International	New and existing buildings, major renovation projects	Energy efficiency Water efficiency Materials and resource use Indoor environmental quality Emissions Operations and maintenance	Rating & Certification Standard
Living Building Challenge	International Living Future Institute	International	New and existing buildings	Sustainable sites Energy efficiency Water efficiency Materials and resource use Indoor environmental quality Equity	Certification Program
WELL	Green Building Certification, Inc.	International	New and existing buildings	Lighting Health & Wellbeing Fitness Comfort Indoor Environment Quality Water	Certification Program
Fitwel	Center for Active Design	International	New and existing projects	Shared spaces Health & wellbeing Indoor environment Air quality Employee health Outdoor spaces	Certification Program
BOMA 360	Building Owners and Managers Association International (BOMA)	International	Existing buildings	Building operations & management Utility consumption Sustainability performance Tenant relations Community Involvement Risk management	Certification Program
35 GE (Excellence in Design for Greater Efficiencies)	International Finance Corporation - World Bank Group	International	New construction and existing buildings	Energy Water Embodied energy Carbon emissions	Certification Program

© Measurabl, Inc. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/help/faq-fair-use</u>./

• Procedures and schemes

TUAL SN SN MENT	
GN MENT	
	Project
CTION ENTS	Prepare
MENT	Submit
CTION	Applicat
T- ICTION	Review
	CTION ENTS MENT ICTION

	LEED
Full Name	Leadership in Energy and Environmental Design
Launch Date	1998
Governing Body	US Green Buildings Council (USGBC)
Certification By	Green Business Certification Institute (GBCI)
Countries Covered	176
Ratings	•Certified •Silver •Gold •Platinum
Assessment	USGBC
Schemes	•New Construction •Existing: Operations and Maintenance •Commercial •Interiors •Core & Shell •Schools •Retail •Healthcare •Homes •Neighborhood Development

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/help/faq-fair-use/</u>

³⁶Center for Real Estate

- Checklist based process
- Ratings: •

Phir

- Certified (40-49);
- Silver (50-59); ۲
- Gold (60-79); lacksquare
- Platinum (80+) ${\color{black}\bullet}$

Center for Real Estate

G		P	EEC	D v4 for BD+C: New Construction an ct Checklist	d Major R	enovatio	Pro	ject l	Name	e: Cambridge Crossing	
Y	?	N	adit	Integrative Process	1	1					
42	2	0.1	ant	ian and Transmototion		10			0 144	statistic and Descurace	12
13	-	UL	ocau	LEED for Neighborhood Development Location		16	4	0	O IN	aterials and Resources	Dequired
1	-	-	nde 1	Sensitive Land Protection		1	V		Pro	2 Construction and Demolition Waste Management Planning	Required
-	2	-	NE 2	High Priority Site		2	-		8 000	with Building Life-Ovcle Impact Reduction	5
	-			right fiding cite		-	-		-	Building Product Disclosure and Optimization - Environmental Product	
5		Cn	edit 3	Surrounding Density and Diverse Uses		5		2	Cre	Declarations	2
5		Cn	edit 4	Access to Quality Transit		5		2	Cre	Building Product Disclosure and Optimization - Sourcing of Raw Materials	2
1		Cn	edit 5	Bicycle Facilities		1		2	Cre	tdt 4 Building Product Disclosure and Optimization - Material Ingredients	2
	1	Cn	edit 6	Reduced Parking Footprint		1	2		Cre	edt 5. Construction and Demolition Waste Management	2
1		Cn	odit 7	Green Vehicles		1	_	_			
_	_	_					6	7	3 In	door Environmental Quality	16
9	1	0 5	usta	inable Sites		10	Y		Pre	meg 1 Minimum Indoor Air Quality Performance	Required
Y	_	Pn	para	Construction Activity Pollution Prevention		Required	Y		Pro	mq 2 Environmental Tobacco Smoke Control	Required
1		Cn	edit 1	Site Assessment		1	1	1	Cre	Enhanced Indoor Air Quality Strategies	2
1	1	Cn	odit 2	Site Development - Protect or Restore Habitat		2	2	1	Cre	Low-Emitting Materials	3
1		Cn	edit 3	Open Space		1	1		Cre	dit 3 Construction Indoor Air Quality Management Plan	1
3		Cn	edit 4	Rainwater Management		3		2	Cre	adit 4 Indoor Air Quality Assessment	2
2		Cn	edit 5	Heat Island Reduction		2	1		Cre	tott 5 Thermal Comfort	1
1		Cn	edit 6	Light Pollution Reduction		1		2	Cre	at a Interior Lighting	2
_	_								3 Cres	edit 7 Daylight	3
6	3	2 M	later	Efficiency		11		1	Cree	dita Quality Views	1
Y		Pn	r pare	Outdoor Water Use Reduction		Required	1		Cre	Acoustic Performance	1
Y		Pn	oreq 2	Indoor Water Use Reduction		Required	-				
Y	_	Pn	E para	Building-Level Water Metering		Required	6	0	0 In	novation	6
2		Cn	f fibe	Outdoor Water Use Reduction		2	5		Cre	adit 1-5 Innovation	5
2	2	2 Cn	edit 2	Indoor Water Use Reduction		6	1		Cre	att 6 LEED Accredited Professional	1
1	1	Cn	edit 3	Cooling Tower Water Use		2					
1	_	Cn	edit 4	Water Metering		1	1	2	2 R	egional Priority	4
-	-							1	Cre	edit 1 Regional Priority: Renewable Energy Production (2 point threshold)	1
13	4	16 E	nerg	iy and Atmosphere		33			1 Cre	adt 2 Regional Priority: Optimize Energy Performance (8 point threshold)	1
Y		Pn	sreg 1	Fundamental Commissioning and Verification		Required		1	Cre	att 3 Regional Priority: High Priority Site (2 point threshold)	1
Y		Pa	areq 2	Minimum Energy Performance		Required			1 Cre	aut 4 Regional Priority: Building Life-Cycle Impact Reduction (2 point threshold)	1
Y		Pre	E para	Building-Level Energy Metering		Required	1		Cre	adit 5 Regional Priority: Rainwater Management (2 point threshold)	
Y	-	Pn	areq 4	Fundamental Refrigerant Management		Required		1	Cre	att 6 Regional Priority: Indoor Water Use Reduction (4 point threshold)	
6	-	Cn	f and	Enhanced Commissioning		6	-		-		-
5	3	10 0	edit 2	Optimize Energy Performance		18	57	26	29 10	OTALS Possible Points	110
	1	Cn	edit 3	Advanced Energy Metering		1			Ce	entitied: 40 to 49 points, Silver: 50 to 59 points, Gold: 60 to 79 points, Platinum: 80 to 1	10
	_	2 Cn	ndit 4	Demand Response		2				I FED OFDITICIOATION TADOFT	
-	_	3 Cn	HOR 5	Renewable Energy Production		3				LEED GERTIFIGATION TARGET -	JILVEH
-	-	1 Cn	edit 6	Cristanceu Reingerant Management		1					
2	-	Ca	odit 7	Green Power and Carbon Offsets		2				(57 POINTS)	
										(or routing)	

Source: link

© City of Cambridge. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

- Evolution
 - LEED v1.0 (1998): only for New Construction (NC)
 - LEED NC v2.0 (2001)
 - LEED NC v2.2 (2005)
 - LEED v3 (2009)
 - LEED v4 (2013)
 - LEED v4.1 (2017)

Center for Real Estate

- Category-specific points
 - Energy related: about 30%
 - Increasing attention on location

Table 1. Category-specific points in LEED v2.2, v3 (2009), and v4 [29].

Categories	LEED v2.2	LEED v3 (2009)	LEED v4
Location and Transportation (LT)			16 (14.6%)
Sustainable Sites (SS)	14 (20.3%)	26 (23.6%)	10 (9.1)
Energy and Atmosphere (EA)	17 (24.6)	35 (31.8)	33 (30)
Water Efficiency (WE)	5 (7.3)	10 (9.1)	11 (10)
Indoor Environment Quality (IEQ)	15 (21.7)	15 (13.6)	16 (14.5)
Material and Resources (MR)	13 (18.8)	14 (12.7)	13 (11.8)
Innovation (ID)	5 (7.3)	6 (5.5)	6 (5.5)
Regional Priority (RP)	-	4 (3.7)	4 (3.6)
Integrative Process (IP)	-	_	1 (0.9)
Total	69	110	110

Source: Amiri, A., Ottelin, J., & Sorvari, J. (2019). Are LEED-certified buildings energy-efficient in practice?. *Sustainability*, *11*(6), 1672. © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (<u>http://creativecommons.org/licenses/by/4.0/</u>).

Remaining problems: (1) High cost; (2) Not include embodied carbon; (3) Actual utility bill not used to decertify.

Table 2. The costs of obtaining the Leadership in Energy and Environmental Design (LEED) certificate.

Type of Costs	Value		
Registration	1500 USD (1282 EUR)		
Verification of the fulfilment of basic Smart Location and Linkage (SLL) requirements	2250 USD (1924 EUR)		
Certification fee	18,000 USD (15,389 EUR) for the first 20 acres; 350 USD (299 EUR) for another acre; 123,000 USD (105,159 EUR) for projects over 320 acres		
In the case of multi-stage certification for each subsequent stage (optional)	10,000 USD (8550 EUR) for the first 20 acres; 350 USD (299 EUR) for another acre; 115 000 USD (98,320 EUR) for projects over 320 acres		

Table 3. Additional certification costs resulting from the process characteristics.

Type of Costs	Value	
Explanations of the certification body regarding general interpretations of individual LEED requirements and rules	220 USD (188 EUR) for the issue	
Verification by the certification body of the fulfilment of a specific requirement regardless of the certification process	500 USD (428 EUR) for the issue	
Verification of the selected criteria after granting the certificate in the appeal process	500/1000/2000 USD (428/855/1710 EUR	

Cost of LEED Source: https://www.mdpi.com/2071-1050/11/8/2359. © MDPI. All rights reserved. This content is excluded from our Creative Commons license. For more information,

39ce https://ocw.mit.edu/help/faq-fair-use/.

Center for Real Estate

DEVELOPMENT SIZE	FEE				
	REGISTRATION	DESIGN STAGE	POST- CONSTRUCTION STAGE	TOTAL	
'Simple' Building	£265	£535	£230	£1,030	
<500m ²	£265	£995	£325	£1,585	
≥500m² - <5,000m²	£265	£1,540	£475	£2,280	
≥5,000m ² - <10,000m ²	£265	£2,070	£795	£3,130	
≥10,000m ²	£265	£2,595	£1,330	£4,190	

Cost of BREEAM

Source: https://www.breeam.com/wp-

content/uploads/sites/3/2018/01/FS021-Rev-23-BREEAM-In-Use-Fee-

Sheet-2-1-1.pdf © BREEAM. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Rental Premiums for Green-Certified Buildings

Шii

Center for Real Estate

RENTAL PREMIUM

Source: World Green Building Council (2013). The Business Case for Green Building.

Benchmarking and Transparency Policies

Difficulties in evaluating green buildings: multiple certifications make difficult to evaluate "greenness" across buildings and incorporate it in investment decisions

The US and EU are implementing benchmarking mandates where owners need to disclose:

- Energy certification of their assets
- Actual energy consumption

This provides full transparency to the market, and creates a platform for regulation

Benchmarking programs and policies in the US

This image is in the public domain.

Energy Benchmark Goals

Estimated Block Level Annual Energy Consumption

Estimated Block Level Annual Energy Consumption

NYC 2009 LL84

Benchmarking

Requirement for buildings to report energy and water usage annually

Center for Real Estate

Plii

Source: <u>https://qsel.columbia.edu/nycenergy/</u>. © Quadracci Sustainable Engineering Lab, Columbia University. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/help/faq-fair-use/</u>.

Energy Benchmark Goals in NYC

2009 LL84

Benchmarking

Requirement for buildings to report energy and water usage annually

2018 LL33

Grading System

Established scoring for buildings to be rated on energy efficiency and for grade to be displayed in each building 2019 LL95

Amendment to Grading System

Made grading system more stringent and requires grade to be displayed at public entrances

Left and top right: © City of New York; lower right: © source unknown All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/help/faq-fair-use/</u>.

Energy Benchmark Goals

Center for Real Estate

Щі

2020 NYC Letter Grade Breakdown -Based on 2019 ENERGY STAR Scores

Benchmarking and Transparency Policies

- Cambridge <u>Building Energy Use Disclosure</u> <u>Ordinance</u>:
 - Require owners of larger buildings to track and report annual energy use to the City and publicly disclose the data
- Certificates: In the EU, 2002/91/EC Directive Member States to ensure that when buildings are constructed, sold or rented out EPC (Energy Performance Certificate) must be disclosed

Center for Real Estate

© City of Cambridge, MA. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/help/faq-fair-use/</u>.

MIT Energy Use Intensity and LEED Certificates

MIT Energy Use Intensity and LEED Certificates.

Source: https://www.cambridgema.gov/CDD/cddlocatormap#map.

© City of Cambridge, MA. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/help/faq-fair-use/</u>.

MIT Hayden Library

© Massachusetts Institute of Technology. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

COMPLETION DATE

2021

- LEED Gold V4 Certification
- Fitwel Health Certification
- Material:

<u>"Red List Free" materials</u> for all interior finish materials and fabrics

• Water:

Use 1.0 gallon-per-flush toilets.

enter for Real Estate

THEMES AND PRIORITIES Renovation and renewal Sustainability Enhancement of life and learning

Originally designed by Voorhees, Walker, Foley & Smith, Hayden Library first opened in 1951 and has served for nearly 70 years as a central element of the campus. MIT is undertaking a project to renew and restore the Library's first two floors, updating the main reading rooms and office spaces to reflect the changing nature of the research library for today's students and faculty.

- Energy:
 - Reduce thermal loss by replacing single-pane glass in the large bay windows with <u>high-performance sealed insulated windows</u>.
 - Update air-handling units and perimeter radiators with <u>new</u> <u>controls</u> to optimize energy use.
 - Upgrade all lighting to <u>low-energy LEDs</u> controlled with daylight and occupancy sensors.
 - <u>EnergyStar appliances</u> throughout the building.

TECHNOLOGY: ONLINE APPAREL STARTUP PUTS ITSELF UP FOR SALE B4

© 2022 Dow Jones & Company. All Rights Reserved.

* * * THE

THE WALL STREET JOURNAL.

Tuesday, March 22, 2022 | B1

See more at WSJ.com/Markets

SEC Pushes on Climate Disclosure

Plan would mandate that public companies estimate greenhouse gas emissions

By PAUL KIERNAN

WASHINGTON—Regulators proposed stringent requirements for publicly traded companies to report information on greenhouse-gas emissions and risks related to climate change, in one of the Biden administration's potentially most significant environmental actions to date.

Center for Real Estate

Phi

The Securities and Exchange Commission formally offered a 534-page proposal Monday that would force publicly traded companies to report greenhouse-gas emissions from their own operations as well as from the energy they consume and to obtain independent certification of their estimates.

In some cases, companies also would be required to report greenhouse-gas output of both their supply chains and consumers, known as Scope 3 emissions. An SEC official said most companies in the S&P 500 would likely have to report Scope 3 emissions. Companies

would have to include the information in SEC filings such as annual reports.

The proposal comes as President Biden's efforts to address global warming through legislation have stalled in Congress, putting pressure on regulatory agencies to deliver on a core Democratic priority. That has drawn criticism from Republicans, who accused Democratic SEC Chairman Gary Gensler of overreach.

Mr. Gensler said investors and asset managers representing tens of trillions of dollars have called for companies' climate-related disclosures to be

more standardized. While hundreds of companies have already begun reporting data about their carbon emissions and other climate-related metrics, SEC officials say current disclosures are inconsistent and hard for investors to compare.

"Companies and investors alike would benefit from the clear rules of the road proposed in this release," Mr. Gensler said.

Meredith Cross, a partner at corporate law firm WilmerHale and former SEC division director, said the proposed rule is "the most extensive, comprehensive and complicated disclosure initiative in decades."

SEC members voted 3-1 to issue the proposal, which will be open for public comment for at least two months before the agency will begin work on a final rule. Commissioners voted along party lines, with all three Democrats voting yes.

Republicans and some industry groups have been gearing up for months to fight the new requirements, which are a hallmark of Mr. Gensler's ambitious policy agenda. They say the proposed rules would increase compliance costs and go far beyond a strict interpretation of the SEC's mandate to protect inves-*Please turn to page B10* FAA Staffer Testifies Ex-Boeing Pilot Lied

By Andrew Tangel

FORT WORTH, Texas—A Federal Aviation Administration training specialist said a former **Boeing** Co. pilot lied to her about how a 737 MAX flightcontrol system worked before two of the jets crashed three

© Wall Street Journal. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/help/faq-fair-use/</u>.

MIT OpenCourseWare https://ocw.mit.edu

11.350 Sustainable Real Estate Spring 2023 For more information about citing these materials or our Terms of Use, visit <u>https://ocw.mit.edu/terms</u>.