11.433J / 15.021J Real Estate Economics Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Week 10: Commercial Markets

- Tracking markets with data: absorption, vacancy, rent, completions and construction.
- Office space: economic sectors, rental elasticity, technology and the workplace.
- Industrial space: inventories, manufacturing, R&D.
- Retail space: centers versus stand-alones, sales, income, obsolescence.
- Hotels: Is there more than GDP?

Some Market Accounting Fundamentals

- v_t: Vacancy Rate (vs "availability rate")
- S_t: Stock of Space
- C_t: Construction starts of new space
- Ab_t: net absorption of space
- L_t: Average lease term
- N_t: Average Renewal rate

 $Ab_{t} = (1-v_{t})S_{t} - (1-v_{t-1})S_{t-1}$ $S_{t} = S_{t-1} + C_{t-n}$

Gross Abs = $S_t (1-N_t)/L_t$

Average Lease up time = $v_t / [(1-N_t)/L_t]$

MIT Center for Real Estate A lease Rent index: Average, Repeat, Hedonic Rent (CB Vouchers) (average annual\$/sqft over lease term)

 $log(R) = \alpha_0 + \alpha_1 SQFT + \alpha_2 GROSS1 + \alpha_3 GROSS2 + \alpha_4 TERM + \alpha_5 HIGH$

 $+ \alpha_6 \text{NEW1} + \alpha_7 \text{NEW2} + \sum_{i=1979}^{1991} \beta_i D_i + \sum_{j=1}^{n} \delta_j S_j$ (1)

Variable	Denver	Cincinnati	Houston	San Francisco	Washington
Constant	1.8153	2.0887	2.0700	2.4211	2.2169
Square Feet	1.08e-06 ¹	3.35e-07 ¹	-8.42e-07	-4.57e-06	-1.03e-07 ¹
G1	0.0952	0.0993	0.0574	0.0172	0.1420
G2	0.0728	0.0315	0.0316	0.0633	0.1177 1
Term	0.0290	0.0196	0.0203	0.0260	0.0120
High	0.1048	0.1293	0.0586	0.1119	0.0361
Dummy 1979	-0.0681	na	0.0082^{-1}	na	na
Dummy 1980	0.2860	na	0.1290	0.0790^{-1}	na
Dummy 1981	0.4775	na	0.3480	0.3664	0.0684
Dummy 1982	0.5992	0.0468	0.3925	0.4847	0.1872
Dummy 1983	0.5468	0.1305	0.3300	0.4193	0.2176
Dummy 1984	0.5394	0.1385	0.1995	0.4879	0.3996
Dummy 1985	0.5402	0.1128	0.1646	0.4525	0.4113
Dummy 1986	0.3556	0.1378	0.1314	0.3408	0.4422

Lease (Rent) Fundamentals:

• An Efficient forward market implies:

 $R^{t,n} = R^{t,n-m} + R^{t+n-m,m}$

[The first superscript designates the date for which occupancy begins, the second the lease term] or: the difference between a three year lease and a 5 year lease signed today equals a forward

- commitment (three years hence) for a 2 year lease.
- Hence if the market is expected to improve, longer lease terms command a higher average rent and vice-versa.
- How to test the efficiency theory?

For the last 25 years, on average lease rent is 2%+ higher for each year longer in Term. But yearly, this varies inversely with market vacancy. Why? (Minneapolis Data)

MIT Center for Real Estate In Most Markets large blocks of space rent for less than small! Why isn't the whole worth more than the sum of the parts?

MIT Center for Real Estate Lease - versus - Own?

- Tax implication? Leases are deductions, as are debt payments.
- Accounting implications? Only ownership shows on the balance sheet (*loophole*).
- Corporate *Prestige*. But you can easily purchase the naming rights to a building.
- Firm Specific Capital. Facility has little other use, and so developer would charge higher lease payments since residual value is zero. Holdup issue.
- Expansion and other options.[see: Benjamin, et.al.]
- Correlation between firm's business and local real estate market.
- If your corporate cost of capital is I_c , how is $I_cP >< R$?

Office and Industrial Space Usage in square feet by Tenure, 1991 (50 metro areas CBRE)

The North American Industry Classification System

(NAICS) & Office Employment

- 11 Agriculture, Forestry, Fishing, and Hunting
- 21 Mining
- 22 Utilities
- 23 Construction
- 31-33 Manufacturing
- 42 Wholesale Trade
- 44-45 Retail Trade
- 48-49 Transportation and Warehousing
- 51 Information
- 52 Finance and Insurance
- 53 Real Estate and Rental and Leasing
- 54 Professional, Scientific and Technical Services
- 55 Management of Companies and Enterprises
- 56 Administrative and Support and Waste Management and Remediation Services
- 61 Educational Services
- 62 Health Care and Social Assistance
- 71 Arts, Entertainment and Recreation
- 72 Accommodation and Food Services
- 81 Other Services (except Public Administration)
- 92 Public Administration

Office Space usage by SIC

Office Employment* in Dallas and Chicago, 1989

	Dallas		Chicago	
Standard Industrial Classification (SIC)	Total (thousands)	Office (thousands)	Total (thousands)	Office (thousands)
Manufacturing	184.7	16.2	499.1	49.4
Mining	17.4	10.3	1.3	0.6
Construction	47.5	0.6	93.8	0.4
Transportation, Communication, and Utilities (TCU) Trade	92.4 287.9	7.1 28.1	148.5 613.6	6.2 51.1
Finance, Insruance, and Real Estate (FIRE)	122.9	122.9	246.0	246.0
Services	314.8	105.8**	730.2	227.0
Total Private	1067.6	291.0	2332.5	580.7

adapted from DiPasquale and Wheaton (1996)

* Those employees occupying separate office space from on-site manufacturing

** includes advertising, computer and data processing, credit reporting, mailing and reproduction, legal and social services, membership organizations, engineering and management services.

Rental Elasticity of Office Space Demand [see also: Hakfoort and Lie]

Figure by MIT OpenCourseWare.

Square feet/worker. Changes in professional Occupation ratio: Rental cost of occupancy, technology?

Torto Wheaton Research

Impact of Technology: Breakdown of Workers at Home (x1000)

	1991	1997	Growth (%)
Total at Home	19,967	21,478	7.57
Paid	7,432	10,116	36.11
35 Hours or More	1,070	1,791	67.38
Full-time, not self-employed	94	583	520.21

Source: Bureau of Labor Statistics, Torto Wheaton Research

MIT Center for Real Estate Investment, Office Employment and Office Net Absorption (1981-2009): bricks vs clicks

How to Explain the recent Absorption Deficit Across Markets (1992 q1 to 1999 q4)

Across Markets, Deficit Explained by Numerous Factors (dependent variable: office job growth – absorption)

0.73304
0.53735
0.48814
0.00268
53

	Coefficients	Standard Error	t Stat
Intercept	0.00532573	0.00255	2.09023
% of 1999 Single-Tenant Stock less % 1992 Single-Tenant Stock	0.05573823	0.02557	2.17969
% of New Office Using Service jobs from 92to99 that Were B&P	0.01157904	0.00286	4.04977
1999.4 Multi-Tenant Office Stock	-0.00000001	0.00000	-1.38736
FIRE Employment as % of all Office Employment 1999.4	-0.01309827	0.00583	-2.24851
Average quarterly TW Rent growth (1999.4\$) 1992.1 to 1999.4	0.27158579	0.06570	4.13370

Variable	Observations
% of 1999 Single-Tenant Stock less % 1992 Single-Tenant Stock	Essentially Part of the Intercept
% of New Office Using Service jobs from 92to99 that Were B&P	More B&P Employment, Bigger Deficit
1999.4 Multi-Tenant Office Stock	Weak Evidence that Deficit is Smaller in Larger Markets
FIRE Employment as % of all Office Employment 1999.4	Smaller Deficit in Markets With FIRE Concentration
Average quarterly TW Rent growth (1999.4\$) 1992.1 to 1999.4	The Demand for Space is Sensitive to Rental Growth

Torto Wheaton Research

MIT Center for Real Estate Office Tenant Base: Increasingly Smaller Service Companies, Less Large Financial Companies

TWR Office Outlook XL

Industrial Space Occupancy by SIC and Building Use (*CBRE*, 1991)

Industrial Tenants, 1991

	Building Use (millions of sq. ft)				
Industry of Occupant (SIC)	Manufacturing	Distribution	R & D	Other	Total
Manufacturing	2422.8	807.1	140.4	2.7	3,373.00
Transportation / Communication / Utilities (TCU)	50.8	474.3	12.4	0.7	538.3
Wholesale Trade	260.1	1047.0	43.8	2.5	1,353.40
Retail Trade	19.4	175.1	5.8	0.2	200.5
Services	90.6	202.2	129.8	1.8	424.4
Other	<u>73.0</u>	<u>190.4</u>	<u>21.6</u>	<u>31.1</u>	<u>316.1</u>
Total	2916.7	2896.1	353.8	39.0	6,205.60

adapted from DiPasquale and Wheaton (1996)

Velocity (J.I.T. technology) = Shipments (sales) / Inventories

MIT Center for Real Estate Warehouse Demand: Δ Space/worker (+10%)= Δ space/\$inventory (-60%) + Δ \$ inventory/worker (+70%)

MIT Center for Real Estate Industrial demand: Δspace/worker (+40%) = Δproduction/worker (+70%) + Δspace/production (-30%)

MIT Center for Real Estate Logistics (S.C.M.): what enters the country at one place does not stay there!

MIT Center for Real Estate Logistics (S.C.M.): what determines which port is used by whom, for what, from where?

[U.S./Canada/Mexico Container Traffic (TEUs)]

MIT Center for Real Estate Trade Flows and Warehouse Demand. Why do: Imports need more space than exports? Ports often need none?

MIT Center for Real Estate Retail sales closely follow personal income, but grow at only 80% of the rate! (times series studies have

difficulty identifying additional demographic effects)

MIT Center for Real Estate Retail Sales across 52 cities: more than just personal income: labor force participation and climate matter as well.

Clothing (logs): sales/pop = .41 inc/pop + .37 emp/pop + .45 Jan Temp -.03 pop $[R^2: .53]$ Food/Beverage eaten in (logs): sales/pop = .89 inc/pop - .26 emp/pop +.09 Jan Temp -.06 pop $[R^2: .58]$

MIT CRE Thesis: 2008

Some contend that housing wealth impacts retail demand, but Housing Wealth has had only Small Impact on Consumption! Much of recent housing Wealth Gains Went Back into Housing!

Existing single family house price, % change year ago

MIT Center for Real Estate Hence going forward Housing Related Sales are going to Suffer the most

Year/Year Change (%)

1967-1993 growth of: Retail store Sales (from establishments), and alternative measures of retail square feet. Is the US over supplied with retail space or is demolition widespread?

- Restaurant and Entertainment: 102%
- Furniture: 79%
- Building Materials: 78%
- Other Hard goods (Appliance...): 68%
- GM: 46%
- Clothing: 31%
- Food at home 26%
- Personal Income: 83%%
- Neighborhood Centers (NRB): 143% (net)
- Regional Malls(NRB): 238% (net)
- All retail space (FW Dodge) 117% (gross)

But is Construction Moving Beyond the Shopping Center Format? Walmart?

MIT Center for Real Estate The small E-Commerce Share doubles every 3-4 years: Will clicks cannibalize Bricks next decade?

The Lodging Industry (Smith Travel Research) [200 national hotel chains]

- Rooms available (potential nights) = "supply"
- Change in Rooms available = "net additions"
- Rooms sold = "demand"
- Change in Rooms Sold = "absorption"
- Rooms Sold/Available = "occupancy"
- ADR = Total room revenue/rooms sold
- REVPAR = ADR x occupancy

Can you detect the "rental elasticity of hotel demand?

MIT Center for Real Estate Full Service Hotels at 9/11: Learning from the first Iraq war!

National Model Forecasts from 2002 (1st Quarter)

MIT Center for Real Estate Just as Forecast: A Remarkable Post 9/11Turnaround: Occupancy first then ADR = Mean Reversion Forecast

