MIT OpenCourseWare http://ocw.mit.edu

11.479J / 1.851J Water and Sanitation Infrastructure in Developing Countries Spring 2007

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Introduction to Water and Sanitation Infrastructure in the Developing World

Susan Murcott – Senior Lecturer, CEE Dept, MIT Water and Sanitation Infrastructure in Developing Countries Week 2 – February 13, 2007

To begin, I want to share with you some images that visually show the scope and gravity of the crisis of water and sanitation in developing countries, based on photos taken by my students and I, or photos taken by others which I have collected.

Photo: Melinda Foran

(Credit: Genevieve Connors)

Drinking Arsenic Contaminated Water Causes Melanosis (left) and Keratosis (right)

Tugu, Ghana, highest guinea worm endemic village in Ghana (60 recent cases – Jan, 2007)

Kibera, Nairobi, Kenya

Kibera, Kenya

Recently Demolished Slum in Mumbai, India – Summer 2006 (Photo: Neil Tangri)

Heavily eutrified Nitra River in Slovakia

Water Rich - Safe Water

Water Poor - Unsafe Water

Global Economic Classes

Income	High > \$20/day (20%)	Middle \$2/day (60%)	Poor \$1/day (20%)
Food and Water	Meat, canned and packaged food, soft drinks, bottled and tap water	Grain, clean water (maybe?)	Insufficient grain, unsafe water
Transportation	Private cars	Bicycles, buses	Walking
Materials	Throw- aways	Durables	Local biomass

Conventional Water Treatment Plant

Alum Coagulation Tank

Sedimentation Tank

Non-Piped Water Supply

Water Quality – 3 Broad Categories

Microbiological

- Bacteria
- Viruses
- Protozoa
- Helminthes

Chemical

- Organic / Inorganic
- Naturally occurring / Anthropogenic
- Radioactive

Physical / Aesthetic

- Turbidity
- Odor
- Taste
- Smell
 - Appearance

Microbiological Contaminants

- "Infectious diseases caused by pathogenic bacteria, viruses, protozoa and helminthes are the most common and widespread health risk associated with drinking water."
- (WHO, 2004. *Guidelines For Drinking Water Quality* 3rd Ed. p. 123)

At the international level, how would you go about solving the problem of disease and death from unsafe drinking water, inadequate sanitation and poor hygiene?

One approach is the Millennium Development Goals (MDGs)

Millennium Development Goals & Targets

Goal 1: Eradicate extreme poverty and hunger -

Targets 1 & 2

- **Goal 2: Achieve universal primary education** *Target 3*
- Goal 3: Promote gender equality and empower women *Target 4*
- **Goal 4: Reduce child mortality –** *Target 5*
- **Goal 5: Improve maternal health –** *Target 6*
- Goal 6: Combat HIV/AIDS, malaria and other diseases Targets 7 & 8
- **Goal 7: Ensure environmental sustainability –** *Targets 9, 10, 11*
- Goal 8: Develop a global partnership for development Targets 12- 18

http://www.developmentgoals.org

Halve, by 2015, the proportion of people without sustainable access to safe drinking water and basic sanitation

The following 6 slides supplement the 1st Tech Tutorial on coagulation

They show the high turbidity waters in Ghana and the effect of alum coagulation

Surface Water Sources in Ghana

• Extremely high turbidity, between 500 – 2,000 NTU

Drinking Water Sources-Northern Region, Ghana

Kaleriga Dam

Ghanasco Muali Dam

Locally Available Alum Product in Markets in Ghana

Before and After Alum Coagulation

Cloth Filter

Turbidity Results (Melinda Foran, 2006)

		Turbidity [T.U.]	
Location	Date	Source Water	Post Alum
Ghanasco Muali Dam	20-Jun	~1600	<5
Kaleriga Dam	22-Jun	>2000	<5
Bipelar Dam	27-Jun	38	~6
Bipelar Dam Turbid	27-Jun	38	38
St. Mary's Dam	29-Jun	>2000	<5
Dungu Dam	4-Jul	400	<5
Libga Dam	6-Jul	75	<5
Bunglung Dam	11-Jul	300	<5
Diare Dam	13-Jul	23	<5
Diare Dam Turbid	13-Jul	23	23
Libga Dam	17-Jul	50	<5
Gbanyami Dam	19-Jul	~1000	<5
Vitting Dam	25-Jul	~125	<5
Aver	age Turbidity	690	-