Massachusetts Institute of Technology Department of Urban Studies and Planning

11.520: A Workshop on Geographic Information Systems 11.188: Urban Planning and Social Science Laboratory

Lecture One: Overview of Course, GIS Principles, Elements of Maps, ArcGIS Basics

1. Overview of Course

- Syllabus/Lectures/Labs/Homeworks/Project
- Other GIS courses: 11.204, 11.220, 11.521, IAP miniclasses, Harvard, BU.
- Student background

2. GIS Principles

2.1 Geographic information

- is information about places—spatial dimension
- 80% of all information include spatial component how should one embed location in data
- knowledge about *both where* something is and *what* it is with query capability in both directions
- *geographic* resolution
 - very detailed
 - information about the locations of *all* buildings in a city
 - information about *individual* trees in a forest
 - very coarse
 - climate of a large region
 - population density of an entire country

- characteristics
 - often relatively static-- e.g., GPS coordinates of fixed features
 - natural features and many features of human origin don't change rapidly
 - static information is easier to portray on a static paper map
 - can be very voluminous
 - a terabyte (10^{12} bytes) of data is sent from a single satellite in one day
 - gigabytes (gigabyte = 10⁹ bytes) of data are needed to describe the US street network

Abstraction--Geometrical Representation

- Model the **boundaries** of spatial objects (vector data models)
 - Point--a single location is enough
 - MBTA Stops
 - Is Boston a point?--At different scales or for different purposes, Boston could be a point or polygon.
 - Line--only one dimension needs to be represented
 - Street centerline, MBTA Railroad track, ridgeline, bux route
 - How does it matter if street is modeled as centerline or as void between blocks?
 - Polygon--2D planar surfaces
 - Cambridge border,<![endif]> central square boundary,census tract, parcel, ...
 - What about river boundary, edge of ocean (at high tide?)
 - Beyond planar surfaces terrain models, 3D CAD models, ...
- Model the *space* that *contains* things (raster data models)
 - 30m x 30m grid cells for Landsat image classified based on predominate land use within each cell
 - 6 inch pixels for color orthophotos developed from aerial photography
 - 3 km x 3km x 1 km (height) volumes for meterological modeling

2.2 Five examples to view and discuss: which are GIS? what to learn? how to add your own data/analyses?

- Private sector mapping services
 - Mapquest or Google-Maps to find a location and generate a street map. <u>www.mapquest.com</u>, maps.google.com
 - Google-Earth (and Keyhole, Digital Earth, etc.) to navigate and 'fly' over the earth: <u>earth.google.com</u>
- Spatial analysis using commercial GIS software
 - ArcGIS to analyze the demographics and economic development potential of Appalachia we'll use ArcGIS

- Web services using open-source (LAMP) tools
 - commute sheds and labor sheds for a community (database driven web pages ia servers running Linux/apache/mysql/postgresql/minn-mapserver/php): Mapping Metro Boston Growth http://subway.mit.edu/umi/ctpp/
 - location-based services: tracking WiFi usage on campus: iSpots, Wireless Technology at MIT (http://ispots.mit.edu/)

2.3 Geographic information systems

2.3.1 Definition

GIS is a computer-based information system that enables capture, modeling, manipulation, retrieval, analysis and presentation of geographically referenced data. (Worboys, 1997)

Other definitions of GIS

- A container of maps in digital form.
- A computerized tool for solving geographic problems.
- A spatial decision support system.
- A tool for revealing what is otherwise invisible in geographic information
- A tool for automatically performing operations on geographic data.

2.3.2 Components of GIS

- Hardware, Software, Data, People, Procedure, Network (Internet)
- GIS hardware is like any other computer (nothing special about the hardware)
 - keyboard, display monitor (screen), cables, Internet connection
 - with some extra components perhaps
 - large monitor, disk drive, RAM
 - maps come on big bits of paper
 - need specially big printers and plotters to make map output from GIS
 - need specially big devices (digitizers, scanners,...) to scan and input data from maps to GIS
- software
 - ESRI (http://www.esri.com)
 - Intergraph Corporation (http://www.intergraph.com)
 - Autodesk (<u>http://www.autodesk.com</u>)
 - Caliper: GIS Software, Mapping Software (<u>http://www.caliper.com</u>)

- what is important is the kind of information that's stored and analyzed
 - o representing and managing information about *what* is *where*
 - the contents of maps and images
 - special functions that work on geographic information, functions to:
 - display on the screen
 - edit, change, transform
 - measure distances, areas, proximity, adjacency
 - combine maps of the same area together
 - useful functions can be much more sophisticated
 - keep inventories of what is where
 - manage properties, facilities
 - judge the suitability of areas for different purposes
 - help users make decisions about places, to plan
 - make predictions about the future

2.3.3 Example GIS Applications

- Resources inventory (what is available at where?)
- Network Analysis (How to get to a place in the shortest amount of time?)
- Location Analysis (Where is the best place to locate a shopping mall?)
- Terrain Analysis (What is the danger zone for a natural disaster? Visibility analysis)
- Spatio-Temporal Analysis (Land use: what has changed over the last twenty years, and why?)

Transportation applications

- a state department of transportation needs to
 - store information on the state of pavement everywhere on the state highway network
 - maintain an inventory of all highway signs
 - analyze data on accidents, look for 'black spots'
- a traveling salesperson needs
 - a system in the car for finding locations, routes
- a delivery company, e.g. Federal Express, UPS, needs to
 - o keep track of shipments, know where they are
 - plan efficient delivery routes
- a school bus operator needs to
 - plan efficient collection routes
- a transit authority needs to
 - know where transit vehicles are at all times
- studies have shown substantial savings when routes and schedules are managed using GIS

Public Policy applications

- Education
- Health and Safety
- Public Service
- Land Use and Transportation interactions

Term Project Example: Measuring Diversity of Land Use Pattern and its Relation to Transportation Mode Choice

2.3.4 Systems, science and studies

- what does it mean to be "doing GIS"?
- using the tools of Geographic Information Systems to solve a problem
 - such as those in the previous examples
 - a GIS project might have the following stages:
 - 1. define the problem
 - 2. acquire the software (and the hardware?)
 - 3. acquire the data
 - 4. clean the database
 - 5. perform the analysis
 - 6. interpret and present the results
- data models and database management
 - o storing/retrieving/manipulating attributes of spatial objects
 - spatial analyses can be complex and computing-intensive with enormous amounts of data
- helping to build the tools
 - o adding to existing geographic information technologies
 - helping to invent or develop new ones
- *studying the theory and concepts* that lie behind GIS and the other geographic information technologies
 - thus GIS = Geographic Information Science
- Forer and Unwin (1997) add a fourth variant
 - Geographic Information Studies
 - are *studies of the societal context* of geographic information
 - the legal context
 - issues of privacy, confidentiality
 - economics of geographic information

3. Elements of the Map

- Scale (Distance on the map compared with distance on the earth)
- Symbolization
- Projection

Scale

- Ratio Scale, 1:10,000, or 1:100,000 or 1/100,000
- Verbal Scale:
 - One inch represents 2,000 feet (1:24,000).
 - One centimeter represents 20 kilometers (1:2,000,000)
- Graphic Scale:
 - Scale bar: Less precise but easily interpreted (for constant scale map projections)
 - Particular useful for publishing maps in newspapers, magazines or online.

Symbolization

- Reality vs. Representation
- Visual Variables: Size, color, shape, orientation, texture
- Use contrasting symbols to portray geographic differences
 - For qualitative differences--Use shape, texture and hue (e.g., land use types).
 - For quantitative differences--Use size to show variation in amount or count (e.g., population, No. of crime),
 - Use graytone or hue to show differences in ratio or intensity --(e.g., proportion of household in poverty, population density).

Geographic Reference System & Projection

- Geographic Reference System: Latitude and Longitude
- In North America, it is called North American Datum of 1983 (NAD83)
- What do Latitude and Longitude mean?
 - Two points on the same longitude, separated by one degree of latitude are 1/360 of the circumference of earth apart, or about 111 km apart.
 - One minute latitude is 1.86 km—nautical mile
 - One second latitude is 30 m.
- For the same latitude, one degree of longitude corresponds to different distance depends on the latitude.
- Map Projections
 - Map projections transform the curved, 3-D surface of the planet onto a flat, 2-D plane.
 - Map projections distort map scale but can preserve area, or angles, etc. (for small areas).

Map 'Layouts' include 'metadata' needed to interpret the map:

- Title, Legend, Scale Bar, North Arrow, Data sources,
- Name or organization
- Date

4. ArcGIS Basics--Lab Exercise 1 (Mapping Cambridge home sales and household income)

I. Setting Up a Work Environment

- Start an ArcGIS
- ArcMap Interface

II. Getting Data Into ArcMap

- Data Frame Properties: Name, Units (Map, Display)
- Layer Property
- Tool in/out
- Attribute Data

III. Basic Map Making

- Simple Symbolization
- Thematic Symbolization

IV. Saving Your Work and Printing Output