
Enforcing Referential Integrity in Oracle

Creating an Entity-Relationship Diagram for the
PARCELS Database
By now the PARCELS database should be very familiar to you. Feel free to review the
PARCELS database schema*. We'll use a subset of the PARCELS database for this

* *discussion: parcels* , owners , fires* , and tax . Treat each of these tables as an entity.

You can use Microsoft Access's "Relationships" feature to create an entity-relationship
(E-R) diagram for this database. To do so, link in to your Access database the tables
listed above. Next, open the "Relationships" window using the Tools > Relationships
menu item. You'll be asked to add tables; add all the tables listed above. You define
relationships by clicking-and-dragging from the primary key to the foreign key, much
like adding joins to a query. Notice that a "Relationships" dialog box appears when you
draw a relationship. This dialog gives you the opportunity to edit the relationship. Since
some of the tables have multiple-column primary keys, you will need to use this interface
to add the additional columns. You can bring back this dialog box by clicking on one of
black relationship lines in the window. Your diagram should include:

• The attributes of each entity
• The primary key of each entity
• Primary key-foreign key relationships

Since Access will not let you print out the relationships window, the only way to preserve
the diagram is to copy-and-paste an image of it into in another application such as
Microsoft Word. To copy the image of the current window, press the "Alt" key, then
press the "Print Screen" key. Open Word, then use Edit > Paste to paste the image into a
Word document.

Consider listing of the foreign key relationships among the tables in the following format:

FK_TABLE (FK_COL1, FK_COL2, ...) references PK_TABLE (PK_COL1, PK_COL2)
where

• FK_TABLE is the table in which the foreign key appears
• FK_COL1, FK_COL2, ... are the columns that make up the foreign key

* Kindly refer back to the Tools section.
* Kindly refer back to the Tools section.
* Kindly refer back to the Tools section.
* Kindly refer back to the Tools section.
* Kindly refer back to the Tools section.

• PK_TABLE is the table containing the primary key referenced by the foreign key
• PK_COL1, PK_COL2, ... are the columns that make up the primary key
• FK_COL1 corresponds to PK_COL1, FK_COL2 corresponds to PK_COL2, etc.

For example, for the fires and parcels tables, you would have the following entry:
FIRES (PARCELID) references PARCELS (PARCELID)

Defining Primary and Foreign Keys in Oracle
Once we have defined the primary and foreign keys in a database schema, it is important
that the proper relationships be maintained so that the database does not become
inconsistent. For example, once we've determined that the column fires.parcelid
constitutes a foreign key that refer to the columns of the same name in the parcels table,
we want to ensure that for every parcelid in fires has is a corresponding row in parcels.
To restate this wish in database jargon, we want to ensure that the referential integrity
of the database is maintained. Fortunately, Oracle has the power to enforce referential
integrity, but to do so, we must inform the database of the relationships involved. We do
so by adding constraints on the tables.

Once you've created tables in Oracle using the CREATE TABLE statement, you can use
the ALTER TABLE ADD CONSTRAINT statement to add primary key and foreign
key designations to the tables. For example, to define the primary key parcelid for the
parcels table, we would use the following SQL statement:

ALTER TABLE parcels
ADD CONSTRAINT parcels
PRIMARY KEY (parcelid);

Constraints in Oracle have names just as tables and views do. Since a constraint can have
the same name as a table, I recommend giving primary key constraints names the same
name as that of the table it applies to. If you omit the constraint name, Oracle assigns a
default name of the form 'SYS_Cnnnnn', where nnnnn are digits. By defining constraint
names in this fashion, it is easy to identify what a constraint is for. When you run a SQL
statement that violates a constraint, the Oracle will display the name of the constraint in
the error message. An informative constraint name will save you the trouble of querying
the data dictionary to figure out the nature of the constraint you violated.

Similarly, we can define the multi-column primary key (parcelid, fdate) for the fires
table:

ALTER TABLE fires
ADD CONSTRAINT fires
PRIMARY KEY (parcelid, fdate);

http://technet.oracle.com/docs/products/oracle8i/doc_library/817_doc/server.817/a85397/statem3e.htm#2061078
http://technet.oracle.com/docs/products/oracle8i/doc_library/817_doc/server.817/a85397/statem2a.htm#2054899

The foreign key parcel in the fires table, refers to we would use the following SQL
statement:

ALTER TABLE fires
ADD CONSTRAINT fires$parcelid
FOREIGN KEY (parcelid)
REFERENCES parcels (parcelid);

Here, we've used a more elaborate convention for naming the foreign key constraint.

Specifically, we use constraint names of the following form:

table$foreign_key_column

table$foreign_key_column_1#foreign_key_column_2

table$foreign_key_column_1#foreign_key_column_2#foreign_key_column_3

Here, 'table' is the name of the table that is being constrained (here, the table fires). The

'foreign_key_columns' in the list are column names from the constrained table (here,

fires.parcelid). This naming convention uses the dollar sign ($) to separate the table

name from the column names and the pound sign (#) to separate the column names, if

necessary. There are some pitfalls with this approach:

•	 Oracle constraint names cannot exceed thirty (30) characters, so it may be
necessary to abbreviate the table and column names in some instances.

•	 The convention of using the dollar and pound signs as separators only works if the
tables themselves eschew using these characters in table or column names.
Generally, avoiding these special characters in identifiers is a good practice to
follow regardless.

To view the constraints you've created, first make your SQL*Plus window at least 113
columns wide and run the following SQL*Plus commands:
SET LINESIZE 113

COLUMN TABLE_NAME FORMAT A12

COLUMN COLUMN_NAME FORMAT A12

COLUMN OWNER FORMAT A12

COLUMN R_OWNER FORMAT A12

Now, run the following query against the Oracle data dictionary to view your constraints:
SELECT CO.TABLE_NAME, CO.CONSTRAINT_NAME,

CO.CONSTRAINT_TYPE,
CC.COLUMN_NAME, CC.POSITION,
CO.R_OWNER, CO.R_CONSTRAINT_NAME

FROM USER_CONSTRAINTS CO, USER_CONS_COLUMNS CC
WHERE CO.OWNER = CC.OWNER
AND CO.CONSTRAINT_NAME = CC.CONSTRAINT_NAME
AND CO.CONSTRAINT_TYPE IN ('P', 'R')

ORDER BY CO.TABLE_NAME, CO.CONSTRAINT_TYPE,
CO.CONSTRAINT_NAME, CC.POSITION;

Primary key constraints show up with a 'P' in the constraint_type column; foreign key
constraints show up with an 'R' (for 'references'). Foreign key constraints reference a
primary key constraint on another table. This referenced constraint is identified in the
columns r_owner and r_constraint_name. Oracle also supports other kinds of
constraints that this query will not show. For example, 'NOT NULL' conditions on the
columns of tables are recorded as constraints. Oracle also supports a "uniqueness"
constraint, which enforces uniqueness on any column or group of columns, not just the
primary key. Referential constraints can also refer to these "unique" constraints.

Constraints are a powerful database management tool, but further discussion of their
considerable capabilities is beyond the scope of this class. I recommend you look at the
Oracle documentation on constraints and data integrity if you want to learn more about
the functionality of constraints. The documentation for the ALL_CONSTRAINTS data
dictionary view (similar to the USER_CONSTRAINTS view used above) explains the
information Oracle stores about constraints in the data dictionary.

If you need to drop a constraint, use the ALTER TABLE DROP CONSTRAINT
command. For example, to drop the primary key constraint we created on the table
parcels earlier, we could try the following SQL statement:

ALTER TABLE parcels
DROP CONSTRAINT parcels;

However, this statement will fail if the foreign key constraint fires$parcelid we created
earlier still exists, since the foreign key constraint references this primary key constraint.
To get around this, we can either drop the referencing constraints individually or we can
add the keyword CASCADE to the end of the command; this instructs Oracle to drop all
other constraints that depend on this constraint:

ALTER TABLE parcels
DROP CONSTRAINT parcels
CASCADE;

Similarly, we will not be able to drop the table parcels if any constraints refer to primary
(or unique) keys in the table. To circumvent this, we could either drop the referencing
constraints individually first or we can add the CASCADE CONSTRAINTS phrase to
the end of the DROP TABLE statement:

DROP TABLE parcels
CASCADE CONSTRAINTS;

When creating new tables and defining constraints, I recommend that you write a SQL
script that performs these tasks in the following order:

http://technet.oracle.com/docs/products/oracle8i/doc_library/817_doc/server.817/a76965/c01intro.htm#9382
http://otn.oracle.com/docs/products/oracle8i/doc_library/817_doc/server.817/a76965/c24integ.htm#3191
http://otn.oracle.com/docs/products/oracle8i/doc_library/817_doc/server.817/a76961/ch214.htm#830
http://otn.oracle.com/docs/products/oracle8i/doc_library/817_doc/server.817/a76961/ch214.htm#830
http://tahiti.oracle.com/pls/tahiti/tahiti.to_URL?remark=drilldown&urlname=http://otn.oracle.com/docs/products/oracle8i/doc_library/817_doc/server.817/a76961/ch2352.htm#14355
http://technet.oracle.com/docs/products/oracle8i/doc_library/817_doc/server.817/a85397/statem2a.htm#2054899
http://technet.oracle.com/docs/products/oracle8i/doc_library/817_doc/server.817/a85397/statem4d.htm#2061308

•	 Create all tables first. Precede each CREATE TABLE statement with a
corresponding DROP TABLE ... CASCADE CONSTRAINTS statement to
facilitate rebuilding the schema if you make changes.

• Alter the tables to add all the primary key constraints.
• Alter the tables to add the foreign key constraints.

Following this order avoids most chicken-and-egg problems that may occur in this
process. Keep in mind, however, that you cannot define a foreign key in the fires table
that references the primary key in the parcels table unless the primary key in parcels has
been defined first. (Technical note: a foreign key can actually reference a uniqueness
constraint instead of primary key constraint, but that it is of little import here.)

This is all you need to know to use primary and foreign keys in Oracle. Note that while
many modern relational database systems allow you to define the primary and foreign
keys, the SQL syntax for doing so varies from one database system to another. Hence,
while the concepts presented here should apply to most relational database systems, your
SQL statements to implement them may look different if you are not using Oracle.

